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ABSTRACT

This paper describes an approach for identification of static nonlin-
earities from input-output measurements. The approach is based
on minimax approximation of memoryless nonlinear systems us-
ing Chebyshev polynomials. For memoryless nonlinear systems
that are finite and continuous with finite derivatives, it is known
that the error caused by the

�
th order Chebyshev approximation

in a specified interval is bounded by a quantity that is proportional
to the maximum value of the � � � � �

th derivative of the input-
output relationship and decays exponentially with

�
. The method

of the paper identifies the system by first estimating the system out-
put at the Chebyshev nodes using localized linear model around
the nodes, and then solving for the coefficients associated with the
Chebyshev polynomials of the first kind.

1. INTRODUCTION

This paper describes the identification of a nonlinear, memoryless
system in a minimax framework. Figure 1 shows a generic block
diagram of the identification problem. The system model consists
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Fig. 1. Block diagram of identification of the nonlinear, memory-
less system � � � �

.

of a
�

th order polynomial � � � � �
, where � is the input to the sys-

tem. The underlying plant � � � �
is a continuous, finite and memo-

ryless nonlinear function with finite derivatives. The output of the
plant is corrupted by additive noise � �  �

, where  denotes a time
!
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instant. Polynomials are popular in nonlinear function identifica-
tion because they can approximate a large number of nonlinearities
with good accuracy. However not all polynomials behave equally
well. Orthogonal polynomials have several advantages over non-
orthogonal polynomials in this problem. For example, the

�
th

order orthogonal polynomial contributes to only the
�

th order dis-
tortion term, implying that it is possible to build system models in
an order-sequential manner. In general, models based on orthogo-
nal polynomials exhibit better stability in finite precision computa-
tions.

In this paper we present an approach for identifying memo-
ryless nonlinear systems using Chebyshev polynomials of the first
kind from input-output measurements. Using Chebyshev polyno-
mials has the advantage that they provide the best approximation
in the minimax sense to arbitrary, continuous nonlinear functions
with finite derivatives in any given finite intervals.

The rest of the paper is organised as follows. The next section
contains an overview of the minimax approximation of nonlinear
functions. Application of this theory to system identification from
input-output measurements is described in Section 3. Experimental
results evaluating the capabilities of our approach in a nonlinear
system identification problem as well as an equalization problem
are given in Section 4. Concluding remarks are provided in Section
5.

2. MINIMAX APPROXIMATION OF NONLINEAR
FUNCTIONS

Let � � � �
be a continuous function with � � � � �

finite derivatives on
an interval % ' � ( � *

and let � + � � �
represent an

�
th order polyno-

mial approximation for � � � �
. It is well known that the largest error

associated with the best
�

th order polynomial approximation for
� � � �

in the minimax sense is given by

. 0 2 4 5 7 9 :; 4 ; < > � @ + B > D � � �

� � � � � H I
�

J + (
(1)

where � @ + B > D � � �
represents the � � � � �

th order derivative of � � � �
[1]. The best approximation is known to be equal to � � � �

at
� � �

points, so called Chebyshev nodes, defined by

� O 5 Q S T J U � �
J � � J W ( U 5 Y ( � ( [ [ [ ( �

(2)

and is given by

� + � � � 5 +
_ ` a

b _ c _ � � � (
(3)
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where � � � � �
represent the � th order Chebyshev polynomials of the

first kind. The orthogonal polynomials � � � � �
are constructed using

the recursion [1]:

� 	 � � � � �
(4)

�  � � � � � (5)

and

� � �  � � � � � � � � � � � � � � �  � � � � � � � �
(6)

In (3), the coefficients
� � associated with � � � � �

can be evaluated
as

� � � �� � �
!

" # 	 % � � " � � � � � " � �
(7)

where

� � � � ( * , � .� 0
� � ( * , � � 0 �

(8)

Even though the above results apply to � 2 3 � � � � 6
, they can be

extended to an arbitrary interval 3 7 � 9 6
using an appropriate trans-

formation of the variable � . A short proof of the above results is
given in the Appendix.

3. NONLINEAR SYSTEM IDENTIFICATION FROM
INPUT-OUTPUT MEASUREMENTS

The fundamental theory described in the previous section requires
perfect knowledge of the input-output relationship of the memo-
ryless nonlinearity at the Chebyshev nodes. When system identi-
fication is performed from (possibly noisy) input-output data, the
exact information about the output values corresponding to input
values associated with the Chebyshev nodes are rarely available.
Consequently our approach involves finding an approximate model
for the input-output relationship in a small neighborhood of each
Chebyshev node, and using the output value derived from this highly
localized model in the Chebyshev approximation problem. In the
experiments presented later in this paper, the local models were
linear, and the dynamic range of the input signals for each model
corresponded to an interval of length 0.004 surrounding each node.
In addition to providing the output values needed by the approxi-
mation problem, this approach has the advantage of reducing the
impact of measurement noise because of the inherent averaging
performed while building the local models.

4. SIMULATION RESULTS

In this section we present the results of two sets of simulation ex-
periments to evaluate the performance capabilities of the method
of this paper. The experiments involved identification of an un-
known, memoryless nonlinearity and its inverse. The input-output
relationship of the unknown plant was

% � ; � � 0 � ? � @ A � C � ; � � 0 � G A H H � � ; � �
(9)

The input signal was an AWGN bandpass signal with a normalized
bandwidth equal to 0.2 and normalized center frequency equal to
0.49. We used a

A
th order polynomial model to perform the identi-

fication. In order to obtain the value of the nonlinearity at the nodes
� " , we used a linear least-squares approximation of the nonlinear-
ity at the node. We used the input-output sample pairs associated
with all input samples in the range 3 � " � 0 � 0 0 � � � " � 0 � 0 0 � 6

. If this

Table 1. Statistics of the parameter estimates in the system identi-
fication example.

Coefficients
Coeff. True Mean Var. 3 � 0 � J 6

� 	 0 -0.00003554982434 2.08022262�  0.8399875 0.83977374137880 5.64273039� L
0 0.00009637033150 2.77009029� N

0.13334375 0.13362840020765 3.79980302� P
0 0.00008471339529 3.87939764�

C 0.02666875 0.02719141657395 3.55426233� J 0 0.00006123399498 5.15691189� Q
0 0.00026341756657 1.27910296

interval did not provide at least 15 points, the range was appropri-
ately enlarged to include a sufficient number of points to perform
this highly localized linearization.

We performed several simulations in which the output of the
plant (9) was corrupted with additive white Gaussian noise with
zero mean value and variance such that the output SNR varied from
0 dB to 50 dB in steps of 5 dB. We also performed an experiment
with no additive noise. We conducted 50 independent experiments
for each noise level using 50,000 input samples each.

Figure 2 shows the plots of the maximum identification error
over all experiments, the mean value of the maximum error over
the 50 runs and the variance of the maximum error as a function
of the output SNR. The no noise case is represented by Inf in the
graph. We can see from the figure that the maximum error and its
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Fig. 2. Maximum absolute error over 50 experiments vs. noise
levels (solid dots), average of maximum absolute error over all runs
for each noise level (crosses) and variances of maximal absolute
errors (circles).

mean value as well as variance decreased exponentially with in-
creasing SNR. The larger than zero error for the infinite SNR case
is due to the errors caused by the localized linearization the method
performs to estimate the output signals at the Chebyshev nodes.
Table 1 shows the ideal coefficients of the orthogonal system, the
mean values and variances of the coefficients obtained from the
identification with 20 dB output additive noise. Even though the
input-output relationship of the unknown plant was a polynomial
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of the fifth order, we chose to model it with a seventh order polyno-
mial to demonstrate robustness of the approach to model mismatch.
Figure 3 displays the power spectrum of the input signal, the output
signal and the difference signal between the output of the identified
system model and the noise free output of the plant for the cases
when the output SNR was 20 dB and infinity. From the figures, we
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Fig. 3. Power spectrum of the input signal, the output signal and
the error signal. Top: No noise is present. Bottom: SNR = 20 dB.

can see that the spectrum of the estimation error is relatively small
even in the case when measurement noise is present at the output.
These results indicate that even though the theory was based on
exact knowledge of the input-output relationship, our approach is
robust to the presence of noise in the measurements.

A second second set of simulations were conducted to evaluate
the capability of our approach in a nonlinear equalization problem.
A block diagram describing this problem is shown in Figure 4. The
nonlinear system to be equalized was the same as the one given in
(9). The measurement noise at the output of the forward system
corresponded to an SNR value of 20 dB. The equalizer was de-
signed using a 21 � � order filter. The results of the simulations are
presented in Figure 5, which shows the power spectra of the input
signal to the forward system, the noisy output of the forward sys-
tem and the estimation error signal. The estimation error signal was
obtained as the difference between the input signal and the output
of a cascade of the forward system and its equalizer. Since the error

� � � � 	 � � � � 	 � � � � � � � � �� � � �

� � � �

� � � �� � � �

Fig. 4. Nonlinear equalization.
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Fig. 5. Power spectrum of the input signal, the output signal and
the error signal in a nonlinear equalization problem.

displayed in the figure is relatively low, we infer that the method
works well in equalization problems even in the presence of mea-
surement noise. Another advantage of this inversion approach is
that it does not require knowledge of the parameters of the forward
system as the approach in [2] needs. Furthermore, the performance
of the method does not depend on the properties of the input signal.

5. CONCLUSIONS

This paper described a minimax approach to identification of non-
linear memoryless systems from input-output measurements. The
performance analysis done through simulations indicate that the
method is robust to the presence of measurement noise in the sig-
nals. Extension of the work to systems with memory and evalua-
tion of its use in a variety of applications are currently underway.

6. APPENDIX

Let  be any (fixed) point other than a node ! # and define

$ %  & ( )

# * , %  - ! # & /
(10)

where ! # is defined in (2). We further define

0 % ! & ( 1 % ! & - 2 ) % ! & - 6 $ % ! & /
(11)
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where � � � � � � � 	 
 � �
and � is a real number such that

� � � � � �
in � � � 
 � �

. We use a polynomial � � � ! �
, where subscript

"
de-

notes the order of the polynomial, to approximate the estimated
nonlinearity in the interval � � � 
 � �

.
The � " % � �

th derivative of (11) is expressed as

� ( � � � + � ! � � � ( � � � + � ! � � � ( � � � +
� � ! � � � 1 ( � � � + � ! �

� � ( � � � + � ! � � � " % � � 2 3 � 4
(12)

Because � � � ! �
is a

"
th order polynomial, its � " % � �

th derivative
is equal to zero. Furthermore,

�
is equal to zero at

" % 9
points

� 
 ! : 
 ! � 
 4 4 4 
 ! � , and the first derivative of
�

has at least
" % �

distinct zeros in the interval � � � 
 � �
. Similarly,

� (
@ +

has at least
"

distinct zeros in � � � 
 � �
, whereas � " % � �

th derivative has at least
one zero C which turns (12) into

� ( � � � + � C � � �
� � ( � � � + � C � � � " % � � 2 3 � 4

(13)

Substituting for � from (11) and noting that
� � � � � �

we get

� ( � � � + � C � � � " % � � 2 3 � � � � � � � � � �
1 � � � � � 4

(14)

Using (10) and (14) gives

� � � � � � � � � � � � ( � � � + � C �
� " % � � 2

�
K L : � � � ! K � 4

(15)

Since � is arbitrarily chosen in � � � 
 � �
, (15) is applicable for all

� � � � � 
 � �
. Therefore, in what follows, we replace � with ! .

The polynomial approximation error is found from (15) as [3]

O � � ! � � � � ! � � � � � ! � � � ( � � � + � C �
� " % � � 2

�
K L : � ! � ! K � 4

(16)

We note that we do not know precisely the value of C in (16). How-
ever, this information is not required for finding the maximum errorO S U V �

X Y ZV \ ^ _ � ` � b c � � ! � � � � � ! � c . In particular,

O S U V d X Y ZV \ ^ _ � ` � b � ( � � � + � C �

� " % � � 2 X Y ZV \ ^ _ � ` � b
�

K L : � ! � ! K � 4

(17)
The following theorem from [1] allows us to find the smallest value

of X Y ZV \ ^ _ � ` � b
�

K L : � ! � ! K �
. It states that among all polynomials

� � � ! �
, the Chebyshev polynomial of the first kind j � � ! �

hugs the
! axis in the interval � � � 
 � �

more closely than any other.

Theorem 1 (Chebyshev polynomial [1]) Let � � � ! �
be any poly-

nomial of
"

th degree with leading coefficient one. Then

X Y Z
j � � ! �

9 � _ � d
X Y Z c � � � ! � c (18)

in the interval � � d ! d �
.

Proof We normalize the Chebyshev polynomial j � � ! �
with its

leading coefficient
9 � _ �

to define

j l� � ! � � 9 _ � � � j � � ! �
(19)

so that the leading coefficient of j l� � ! �
is unity. The following

explicit expression involving trigonometric functions is known [4,
1] for the Chebyshev polynomials of the first kind:

j � � m n o q � � m n o " q 4
(20)

Let ! � t u v q
, and use (20) with (19), to get

j l� � ! � � 9 _ � � � m n o " m n o _ � � ! � 4
(21)

The extreme values of j l� � ! �
are given at

x K � m n o � y z { " � 
 y � � 
 � 
 4 4 4 
 "
(22)

where j l� � x K � � 9 _ � � � m n o y z � � � � � K 9 _ � � � 4
(23)

This result says that the maximum deviations of j l� � ! �
from the !

axis are

j l� � ! � � | �
9

� _ � 4
(24)

Since both polynomials � � � ! �
and j l� � ! �

have the leading coeffi-
cients equal to one, the difference of the two polynomials

� � � ! � � j l� � ! �
(25)

is a polynomial of at most (
" � �

)th degree. If we assume that

X Y Z c j l� � ! � c ~ X Y Z c � � � ! � c at any point ! � � � � 
 � �
, the poly-

nomial � � � ! � � j l� � ! �
would due to (23) change the sign at least"

times, which means that the polynomial � � � ! � � j l� � ! �
has at

least
"

roots. This is not possible for a polynomial of (
" � �

)th
order, which proves (18).

Q.E.D.

Note that 1 � ! �
with roots ! K 
 y � � 
 � 
 4 4 4 
 "

is indeed the
� " % � �

th order Chebyshev polynomial. Therefore we can combine
(16) and (24) to get the bound on the maximum error as

O S U V d X Y Z� � � � � � ( � � � + � C �

� " % � � 2 3
�

9 � 4
(26)
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