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ABSTRACT

The problem of non-linear dimension reduction is relevant to many
different areas of knowledge. While the linear case can be solved
by variations of PCA, the non-linear case is more complex. Re-
cent advances incorporate geometrical information by estimating a
manifold that approximates the data. The work presented here fol-
lows that trend and tackles some limitations of existing approaches:
arbitrary topology and curvature of the manifold, unknown intrin-
sic dimension and, for mixture models, unknown number of mix-
ture components.

An algorithm, designated TBA, is presented that addresses
the enumerated difficulties and is faster that existing methods, in
datasets of a few thousand points. The motivation behind TBA is
to perform motion tracking in video sequences, but the algorithm
can be applied in a wide class of problems.

The paper starts with a brief review of related work and then
describes the TBA approach in detail. The algorithm is then sub-
jected to comparative evaluation.

1. INTRODUCTION

The problem of non-linear dimension reduction is closely related
to that of feature extraction in pattern recognition literature, and
it is important for a number of reasons. If solved, it can yield
a concise and meaningful representation of a given set of data,
at least in the case where the data belong to an intrinsically low-
dimensional manifold embedded in high-dimensional observation
space. This allows data compression, complexity reduction, and
increased robustness to outliers, for example.

A situation where such a problem arises is motion analysis
from video sequences. In the worst-case scenario, if no contours
or other features are available, each image in a sequence is an ob-
servation, a point in a space which has a dimension equal to the
number of pixels - typically tens of thousands. When faced with
this type of problem, it is common in machine learning to perform
Principal Component Analysis (PCA), thereby extracting a linear
subspace spanned by the directions of maximum variance of the
data.

Another common method, particularly when distances between
points are available, rather than their coordinates, is multidimen-
sional scaling (MDS) [1]. The end result (depending on the metric)
is typically a linear approximation, like in PCA. However, linear
methods not only tend to overestimate the intrinsic dimension of
non-linear manifolds, but also often fail to deliver a meaningful
representation of the data, particularly when curvature is high.

This work was partially supported by FCT POCTI, under project
37844.

1.1. Related Work

Recent advances in non-linear methods such as Generative Topo-
graphic Mapping (GTM), [2], Locally Linear Embedding (LLE),
[3] and ISOMAP [4], all attempt to learn an intrinsically low-
dimensional manifold embedded in observation space.

In GTM, a probabilistic model is also sought, which is not the
case with LLE and ISOMAP. Also, neither LLE nor ISOMAP are
mixture models, so while GTM requires an a priori fixed num-
ber of mixture components, LLE and ISOMAP do not. On the
other hand, GTM is heavily dependent on initialization and fails
frequently when the manifold is not close to linear.

ISOMAP is a global method , i. e., it attempts to preserve
distances between faraway points as well as nearby ones. It is
based on applying MDS to geodesic distances, which are approx-
imated by a graph that connects only neighboring points, thus
avoiding unwanted short-circuits between nearby folds of the man-
ifold. Although ISOMAP has stronger theoretical guarantees of
convergence to the true manifold than LLE, both methods are es-
sentially suited to locally flat manifolds. A newer version, called
C-ISOMAP (C for Conformal) [5] is able to deal with curvature.
It does not, however, deal with non-trivial topologies, such as that
of a sphere or a torus. Also, it relies on routing algorithms, such
as Dijkstra, to find the geodesic graph. The complexity of such
algorithms is quadratic in the number of points, which renders
ISOMAP’s computing requirements prohibitive for much more than
two or three thousand points. Although this problem can be cir-
cumvented by a variation called L-ISOMAP (L for Landmark) [5],
the issue remains of which points to use as landmarks.

1.2. Present Contribution

Tangent Bundle Approximation (TBA), by contrast, is a local method.
It finds multiple representations of the manifold, valid in different
regions, and does not require computation of geodesic distances,
which makes it considerably faster than ISOMAP. The number of
local models does not need to be known in advance, and curvature
is well tolerated, as are complex topologies.

The present paper builds on previous work, namely [6] and
[7], where the TBA algorithm was introduced. It should be noted
that TBA is meant for motion tracking applications, and therefore
includes dynamic learning procedures, which are not addressed in
this paper. The focus here is on the two following aspects: i) The
manifold learning method; ii) A comparative evaluation of TBA
with ISOMAP.

An overview of TBA is given in the next section, followed by
a detailed explanation. The later sections cover some experimental
results, followed by concluding remarks.
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2. OVERVIEW

The model for a manifold M comprises a set of diffeomorphisms
gi : Ui ⊂ R

n → R
m, where n is the manifold dimension, m is

the dimension of the embedding space and the Ui are open sets.
The gi, also called charts, have overlapping images gi(Ui), also
called patches, which cover the manifold. As diffeomorphisms,
the charts admit inverses g−1

i
.

As the name indicates, TBA approximates the tangent bundle
of the manifold. The tangent bundle of the manifold is the set
of all tangent vectors at all manifold points, together with a map-
ping from the manifold points to the tangent vectors [8]. Infinitely
many such points and vectors exist, so a discrete and parsimonious
approximation is required.

The approximation is done through a soft partitioning based on
the maximum principal angle (defined in the next section) between
neighboring tangent subspaces. Tangent subspaces are found us-
ing local PCA - an approach common in similar problems, e. g.
surface reconstruction in 3D [9]. The novelty, however, consists
of using the maximum principal angle as a similarity measure for
the partitioning procedure. This allows charting the manifold in
arbitrary topologies, by using the orthogonal basis of the tangent
subspaces as coordinate systems and then solving a number of re-
gression problems equal to the number of tangent subspaces.

The TBA algorithm is valid for any number of dimensions,
both of the manifold and the embedding space. The only assump-
tions about the manifold are that it must be smooth and compact,
in order to allow covering by a finite number of charts.

The starting point is a training set of scattered, noisy points
y ∈ R

m in observation space, such as the one in Figure 1 (a).
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(a) Noisy observations (625 points)

(b) Estimated manifold (ε = 0.7, τ = 1 radian)

Fig. 1. Example: a torus, estimated by TBA from observations.

The algorithm follows two main steps: i) Partitioning the data
and finding local coordinate systems; ii) Estimating charts. Each
of these steps is addressed in their respective sections.

3. PARTITIONING

When charting a manifold with arbitrary topology, more than one
patch may be required to avoid metric distortion - the so-called
cartographer’s dilemma. Note that in some situations, such as a
torus, which has zero total curvature, one single patch would be
theoretically enough. The same is not true, however, in the case of
a sphere (which requires two patches), nor in more complex cases.

3.1. Intrinsic Dimension

As a first step, the smallest eigenvectors of the local covariance
matrix are found for a neighborhood around each data point. These
smallest eigenvectors define a normal subspace to the manifold,
while the largest eigenvectors define a tangent subspace. This is,
essentially, local PCA.

In this step, an important decision must be made: what is n,
that is, the intrinsic dimension of M? TBA addresses this by auto-
matically finding the ”knee” of the eigenvalue plots for all tangent
subspaces at all points. The eigenvalue immediately before the
greatest drop in value should correspond to the true intrinsic di-
mension. The median for all eigenvalue plots is therefore used as
the estimate of n.

3.2. Principal angles between nearby normal subspaces

To make chart estimation easier, it is required for simple projection
to give a one-to-one mapping between the hyperplane and the cor-
responding manifold region. This can be ensured by not allowing
the maximum principal angle between normal subspaces to vary
more than a set threshold τ . The exact value of τ is not critical, as
long as it is below π

2
. Therefore, the normal subspaces and their

principal angles must be calculated.
The q principal angles between subspaces spanned by the columns

of matrices A and B are defined, as in [10], by

cos θk =
|ukAT Bvk|

‖Auk‖‖Bvk‖
(1)

with k = 1, . . . , q = dim(A) = dim(B) and, for k > 1, subject
to recursively defined constraints for u and v, the columns of A
and B:

u
T

i AT Av = v
T

i BT Bvk (2)

for i = 1, 2, . . . , k − 1.
An efficient implementation can be found in MATLAB’s sub-

space command. The maximum of θk is used as TBA’s intra-patch
similarity measure.

Normal subspaces are computed by visiting all data points
and, for each one, finding the m − n smallest eigenvectors of the
covariance in a neighborhood of radius ε. Naturally, this is an un-
knwown scale parameter which strongly influences the algorithm.
This is the case with LLE and ISOMAP as well.

3.3. Region Growing

Next, patches are found by region growing. Each patch grows by
appending all neighboring points where the normal subspace does
not deviate, in maximum principal angle, more than a set threshold
from the normal subspace at the initial seed. Any specific data
point may belong to more than one patch. The following pseudo-
code illustrates the procedure:
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while M not covered
P = new patch
y0 = choose a new seed from data points

not in any patch
{n0}= normal subspace basis at y0
while NOT all points visited

y1 = choose nearest neighbor
n1 = normal subspace basis at y1
if principal_angle( n0, n1 ) < tau

AND distance( y0, y1 ) < epsilon
append y1 to P

end if
end while

end while

The final result is a covering of M by a finite number, p, of
overlapping patches. Within each patch, the normals don’t devi-
ate more than τ , and the distance test ensures that each patch is a
connected set. Subsequently using patch-wide PCA (with all patch
members - not the same as local PCA above) to find the best fitting
hyperplane provides a number of local coordinate systems, valid in
different manifold regions. The best hyperplane, in a least squares
sense, is spanned by the n largest eigenvectors returned by patch-
wide PCA. Each patch is thus associated to an hyperplane, and the
collection of hyperplanes approximates the tangent bundle.

An important note is that TBA does not guarantee that the
number of patches is minimal - in fact, the followed approach leads
to an overestimation of the number of patches needed to cover a
manifold.

4. CHART ESTIMATION

Charts are then estimated, using the coordinate systems found above.
Since the subspace angle was only allowed to change up to a spec-
ified limit, it is easy to ensure that the charts are bijective. The
estimation procedure is designed to ensure that the charts are also
differentiable, so they are diffeomorphisms, as intended. It is im-
portant to note that, since there are no folds in any patch (thanks to
the angular restriction), the regression problems are significantly
simplified.

There are many alternatives for non-linear function approx-
imation that meet the problem’s requirements. The results pre-
sented here were obtained using thin-plate splines [11], but any
other function approximator can be used, as long as it doesn’t re-
quire regularly gridded data - RBF or MLP neural networks are
good possibilities as well.

From the previously obtained partition of M in p patches, it is
possible to find p charts gi(x). With points y = [y1 . . . ym]T be-
longing to a given patch i, and having previously performed PCA,
a matrix Vi of eigenvectors and a mean vector µi are available.
Projecting y on the hyperplane associated with patch i can be done
according to

x̃ = V T

i (y − µi) (3)

x = [x̃1 . . . x̃n]T (4)

As for gi, which is the inverse mapping of (2), it follows the
expression

gi(x) = Vi

⎡
⎢⎣

x1

...
xn

⎤
⎥⎦ + µi (5)

The remaining m − n components of x̃, could be set to zero,
which would yield a piecewise linear approximation of M. In-
stead, however, they are kept, which increases the approximation
precision and preserves curvature. In local coordinates, the mani-
fold parametrization is

x → [x g̃(x)]T (6)

where g̃ denotes the approximating thin-plate spline.

5. RESULTS

To illustrate both the manifold learning and the dynamic learning
results in different circumstances, two synthetic examples are pre-
sented, followed by a video sequence example with real data.

5.1. Synthetic Examples

In the first synthetic example, a 2-torus embedded in R
3, as in Fig-

ure 1 (a), it is shown that the TBA algorithm can reconstruct non-
trivial shapes from noisy data - 625 points in a few seconds, in this
case. The estimated manifold is represented in Figure 1 (b). The
torus is, as seen, accurately reconstructed. Neither ISOMAP/C-
ISOMAP nor LLE can deal with this example, because of its topol-
ogy. The parameters used are ε = 0.7 and τ = 1 radian (< π/2).

The second example is a swiss-roll dataset similar to the one
used to demonstrate ISOMAP in [4], but now with 2601 points on
a regular grid instead of 1000 randomly positioned points. For this
example, the results of both ISOMAP and TBA are presented. The
code for ISOMAP is the one available on http://isomap.stanford.edu,
and the neighbourhood parameter was k = 8 nearest neighbours.
For TBA, ε = 0.2 and τ = 1 radian were the values used.

In Figure 2, the global embedding returned by ISOMAP is
shown, in the form of an adjacency graph, since ISOMAP does not
include a method for continuous interpolation at points other than
those in the training set. For TBA, the returned patches are com-
puted for points not included in the training set and represented
in observation space, overlayed on the original points and the 11
returned patch centers (red circles). Both ISOMAP and TBA ac-
curately find the true manifold, as seen in the figure. However,
ISOMAP takes 89 minutes, while TBA takes 4 minutes. Both tests
were made using a Pentium 4 laptop at 1.8 GHz with 512 MB of
RAM.

5.2. Video Sequence

The training set for this example consists of M=194 cropped 71 ×
71 grayscale images from the same person (a TV presenter), and it
is intended to learn the manifold of valid face configurations. The
mean image is subtracted so that the training set has zero mean. A
more detailed description of this example can be found in [7].

Briefly, using the eigenface method [12] it is possible to ex-
press all images as linear combinations of the first M ′ eigenvec-
tors (also called eigenfaces) without too much loss of information.
In this case, M ′ = 15 is a reasonable value.

Therefore, a linear transformation is applied to the data and
only the top M ′ rows of the transformed data W are kept, reducing
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(a) Original swissroll data (b) Embedding with ISOMAP (c) Manifold learned by TBA
with patch centers (red circles)

(2601 points, regular grid) (k = 8, time = 89 min.) (ε = 0.2, τ = 1 radian, time = 4 min.)

Fig. 2. Example: swiss roll data, with ISOMAP and TBA.

(a) Original images.)

(b) Reconstructed images (eigenfaces followed by TBA).)

Fig. 3. Example: images from a video sequence.

the problem dimensionality from 71 × 71 = 5041 to 15. The
resulting 15 × 194 matrix contains the new training vectors for
TBA.

The algorithm returns two patches with intrinsic dimension 3,
although there is no clear ”knee” for the eigenvalues in this case.
Even using only 3 degrees of freedom instead of 15, the recon-
structed sequence is quite similar to the original, as seen in Figure
3. An interesting development is that interpolation between faces
from the training set is possible, thanks to the continuous charts,
and allows synthesis of new, valid face images.

6. CONCLUSIONS

This paper presents an approach for dimension reduction and man-
ifold learning, based on the Tangent Bundle Approximation (TBA)
algorithm. Results are presented for synthetic examples and a face
example with real data. A comparative evaluation with ISOMAP
shows that TBA is at least an order of magnitude faster, and can
be used in a wider class of problems. TBA also returns continu-
ous charts that can be used for interpolation. Although the same
could be done in ISOMAP, taking advantage of the global discrete
mapping it provides, highly folded manifolds would make such
interpolation difficult - a problem TBA avoids by restricting varia-
tion of the maximum principal angle of the normal subspace within
each patch.

Issues for future work include reducing the number of patches,
for a more concise model, as well as a way to compute the scale
parameter ε.
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