
Abstract- We present experimental results of the blind
separation of independent sources from their nonlinear
mixtures. The proposed EKENS algorithm is a
generalization of natural gradient algorithm and Gram-
Charlier series, which is extended in two ways: (1) to deal
with nonlinear mapping, and (2) to be able to adapt to the
actual statistical distributions of the sources by estimating
the kernel density distribution at the output signals. In
this paper, the observations are modelled based on
nonlinear generative multilayer perceptrons analysis. The
theory of the EKENS learning algorithm is discussed.
Simulations show that the EKENS algorithm is able to
find the underlying sources from the observation, even
though the data generating mapping is nonlinear and
unknown.

I .Introduction

Linear Independent Component Analysis (ICA)[1] and
linear Blind Source Separation (BSS) from linear
mixtures are relatively well-established approaches with
many techniques[2, 3]. These unsupervised blind learning
methods are often based on a generative approach, where
the goal is to explain how the observations were
generated from the independent components sources. It is
assumed that there exist certain source signals which have
generated the observed data through an unknown
mapping. The goal of the proposed generative learning is
to identify both the source signals and the unknown
generative mapping.

However, it is evident that nonlinear mixing is far more
difficult than the linear case. This nonlinear mapping
problem has attracted attention recently [4, 5]. In the non-
linear mixture model, the linear ICA theory and the
equivariant property might not be able to deduce the
nonlinear mapping. Therefore, the blind separation
algorithms for the linear mixture model generally fail to
extract the independent sources from the non-linear
mixtures.

In this paper we consider ICA as the problem of
transforming a set of patterns x (vectors of size n, often
called observations), whose components are not
statistically independent from one another, into patterns y
=W(g(x)) whose components are as independent from one
another as possible. In the nonlinear mapping case, g is a
nonlinear multilayer network and W is the unmixing
matrix. In the blind source separation application, one
further assumes that the observations are the result of a
mixture of statistically independent sources, si, i.e. x
=M(As), si being the ith component of s, A is a nxn
unknown full-rank and non singular mixing matrix, and
M is the set of invertible nonlinear transfer functions. The

purpose of BSS is to recover the sources from the
observations.

Generally, the nonlinear mapping is rather unconstrained
and difficult, and normally demands a good dependence
measure. Many contributions to the nonlinear problem
already exist. Taleb and Jutten [4] proved that the source
independence assumption is not strong enough in the
general nonlinear case. They proposed a direct estimation
of the score functions [4] by minimizing the mean square
error of the parameter vector in post-nonlinear mixtures.
The results show that the least mean square estimation of
the score functions performs well with hard nonlinearities.
Also, Taleb [6] investigated a structured nonlinear model
framework, and proposed a stochastic algorithm designed
to deal with the parametric nonlinear mixtures. Valpola,
Giannakopoulos, Honkela and Karhunen [5] proposed an
alternate approach using Bayesian ensemble learning in
nonlinear ICA. The ensemble learning provides the
necessary regularisation for nonlinear ICA by choosing
the model and sources that have most probably generated
the observed data.

Our goal is to develop a new method, which we term
EKENS, for inferring the original sources from the
nonlinear observations alone. The nonlinear mapping
from the unknown sources to the observations is modelled
with the multi-layer perceptron (MLP) network. The main
objective of this paper is to investigate a class of
nonlinear transformations in mixing systems for which an
iterative and equivariant treatment is presented. The paper
is organized as follows: In section II, the nonlinear model
is presented and a set of learning rules is derived in
section III based on Gram-Charlier criterion. The learning
rules are verified via simulation in section IV. The
concluding remarks are discussed in section V.

II. Equivariant Kernel Nonlinear Separation (EKENS)

Genetic algorithms (GA) are currently one of the most
popular class of stochastic optimisation techniques. In this
work, we propose a new GA--Equivariant Kernel
Nonlinear Separation (EKENS) algorithm. This consists
of obtaining an estimate of the pdf F(x) and,
subsequently, application of the nonlinear function fy(y) =

dy

d
logF(y). We employ Gram-Charlier and Edgeworth

series expansion [7, 8] to approximate the probability
distribution F(x). The key idea of these expansions is to
write the characteristic distribution function of the
probability density function of F. These distribution
functions are approximated to characterise the distribution
properties. The summary of the Gram-Charlier and
Edgeworth series is as below.
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Gram-Charlier Kernel Density Estimation, F

Preliminary: The global separation system for the
nonlinear mixtures consists of both nonlinear and a linear
stage[9]. The nonlinear stage consists of n parametric
nonlinear functions to cancer the post-distortion. The
linear stage consists of a regular separating matrix W
devoted to the separation of the linear mixture. The
nonlinear stage can be performed by constructing a
nonlinear transform g to isolate each component of the
observation vector, x,

g(x)= x- 0η *F(x) (2.1)

where 0η is a positive adaptation step size and F(x) is the

probability density function of the nonlinear observation
x.

When the true probability distribution function (pdf) of a
random variable x is unknown, yet believed to be similar
to a normal one, it is quite natural to approximate it with a
pdf of the normal form. The Gram-Charlier and
Edgeworth series [7, 8] optimizes the determination of the
probability density function (pdf) by data moments. The
pdf F(x) can be investigated via Hermite's polynomials
(Hn(x)) truncated expansion:
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where )(xm σ•α is the Gaussian distribution having m as

mean and σ as standard deviation.

Hermite's Polynomials Determination, Hn

The Hermite's polynomials are evaluated by the following
iteration rules:
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where m and σ are the mean and standard deviation of the
Gaussian which are given by
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It can be shown that Hn(x) can be calculated from Hn-1(x)
and Hn-2(x). The Hermite's polynomials terms [8] are
obtained as follow:
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Coefficient Cn Determination
In Gram-Charlier's expansion, the input data are used to
determine the moments up to order k and the expansion
gives the pdf for the continuous random variable x. The
coefficient Cn can be calculated via Hermite’s
polynomials and moments by the following
orthogonalization process:
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Further, it can be shown that Cn is determined by Cn-1 and
Cn-2. Thus, Cn can be calculated via an iterative process,
which requires only the direct calculation of C0 and C1.

The coefficients Cn are obtained as a function of the
Gaussian parameters. The first six coefficients are
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Weight Determination
In all simulations, the length t of the source signal
sequence is 50 and the total number of iterations is 3500,
where one iteration involves processing all the
observations. As shown by the results, the EKENS
algorithm is able to recover the sources from nonlinear
mixtures that involved relatively smooth nonlinearities.
The experimental results of the above algorithms are
presented for 2, 4 and 6 mixtures of sources. This section
reports the performance by presenting some illustrative
examples. The six independent and zero mean source
signals are given in eq(3.1).

(2.9)

(2.10)

(2.12)

(2.8)
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Following the Gram-Charlier expansion based estimation
of the pdf F(x), the nonlinear density function fy(y) is

estimated, fy(y)= dy

d
logF(y). The iterative equivalent

gradient algorithm for the estimation of the unmixing
matrix W is then formed as follow:

W(k+1) = W(k)+ 0η [I – (fy(yk))yk
T]W(k) (2.13)

where 0η is a positive adaptation step size, I is the identity

matrix. At each iteration k, a new estimated density fy(yk)
is calculated using Gram-Charlier procedure, with the
separation output signal yk being the new observed signal
x.

III. Experiments
In this section several experiments have been performed
to evaluate the validity and performance of the EKENS
algorithm compared with the conventional ICA based
EASI [10] and Infomax [3, 11] algorithms. These
experiments are used to assess the EKENS algorithm’s
ability to perform blind source separation in several
nonlinear mixtures. The learning scheme for all the
experiments is the same. First, normalization is used to
reduce the dimension of the mixtures to n. It is also used
to find sensible initial values for the posterior means of
the mixtures. The initial weights W0 of the network have
random values. The pre-processed mixtures will make the
separation easier. The mixtures are then adjusted via the
iterated weight matrix W.

s1(t) = cos((1:t)*(4*pi)/t)
s2(t) = sin((1:t) • (10*pi)/t)
s3(t) = cos((1:t) • (2*pi)/t)
s4(t) = sawtooth(t)
s5(t) = sinc(1:t)
s6(t) = square(1:t) (3.1)

We consider a two-channel, a four-channel and a six-
channel nonlinear mixture with tanh nonlinearities as
given in eq(3.3). The corresponding mixing matrices as
given in eq(3.2).
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; (3.2)

e1= (As1) +tanh(5* As1)
e2= tanh(As2)
e3= tanh(5*As3)
e4= tanh(As4)
e5=tanh(As5)
e6=3*tanh(As6); (3.3)

The EASI, EKENS and Infomax have the advantage of
learning the output nonlinearities during sampling. They
are therefore adaptive to the actual statistical distributions
of the sources. The sources (eq(3.1)) are independent
because the values of one source does not convey any
information about the other source. Our tests of nonlinear
ICA were mainly aimed at showing this adaptability of
the method to different nonlinear source distributions. The
learning rate is fixed at 0η = 0.0001.

In general, nonlinear mapping is quite complicated and
difficult. It is interesting to evaluate the performance of
the conventional linear ICA method and new proposed
algorithm to deal with nonlinear mapping problems. For
the 6 source mixing case, the separation results are
depicted in Fig1, the original unknown sources (eq.3.1)
are shown on row 1. The output displays for EKENS,
EASI and Infomax are in row 3, 4 and 5 respectively. As
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Kurtosis (6 sources) Kurtosis (4 sources)
Recovered Recovered

Sources Original
Kurtosis

Mixes
Kurtosis

EKENS EASI INFOMAX EKENS EASI INFOMAX
1 -1.5554 -1.3833 -1.4139 -0.5839 -0.7961 -1.4207 -0.8405 -1.2543
2 -1.5594 -1.6906 -1.5806 -1.0055 -0.7462 -1.6065 -1.0055 -0.3416
3 -1.5594 -1.9243 -1.4895 -0.7159 -0.2504 -0.6985 -0.2504 -0.1307
4 -1.2665 -1.5047 -0.6941 -0.8427 -0.4347 -0.1071 -1.1176 -0.7370
5 -0.4634 -1.6482 -0.3111 -0.1152 1.1721
6 -2.0396 -1.5284 -2.0053 -0.8358 -1.0126
Table 1: The zero-mean white sources with sub-gaussian distribution tested with 4 and 6 nonlinear mixing.

Figure 1: Top row: The original sources; Second row: The
mixtures; Third row: The recovered sources using EKENS
algorithm; Fourth row: The recovered sources using EASI
algorithm; Fifth row: The recovered sources using Infomax
algorithm.
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Figure 2: Top : BER; Bottom: Performance Index using
a) ____ EKENS, b) ----- EASI and c) -.-.-.Infomax
algorithm

shown in Fig.1, the EKENS is able to recover the sources
from the nonlinear distorted mixtures. The reconstructed
signals are quite accurate. Also, the EASI algorithm
because of its equivariant characteristic estimates
relatively well, but the output is relatively noisy. From
our observation, the linear Infomax algorithm is not able
to estimate the nonlinear mixture accurately. This
experiment shows that this linear method fails to deduce
the number of sources and the outputs.

A measure of separation performance is given by the
similarity in kurtosis of the source and the corresponding
unmixed signals. Table 1 shows the kurtosis results for 4
and 6-mixing. It can be seen that the EKENS algorithm
provides, in general, better kurtosis matching of source
and output signals. Note, the source signals are sub-
gaussian and hence have negative kurtosis.

Another measure of separation performance is given by
the performance matrix P=W • A. The • denotes
multiplication. Perfect separation corresponds to P =
identity. Table 2 shows that the performance matrix P for
the EKENS and EASI algorithms is close to the identity
matrix. This shows a clear separation of all sources from
their nonlinear mixtures.
Figure 2 compares the bit-error-rate (BER) and
performance index of the separated output over 3500
iterations. The simulation results suggest that both EASI
and EKENS algorithms are sufficient to separate the true
sources. The displayed BER and performance index are

very low for EKENS methods between 2 and 6 mixtures.
EKENS shows BER of 10-5, 10-5 and 10-4 for 2, 4 and 6
mixing respectively. However, EASI algorithm appears to
suffer performance degradation with increased number of
mixtures. EASI method shows BER of 10-1.5 for 6-mixing.
Note both EKENS and EASI display fairly good
performance values. The low performance index values
for the EASI method however might be due to a lot of
gaussian noise in the separated output signals. Also, we
notice that the conventional linear Infomax fails to extract
the nonlinear distorted mixtures.

IV. Conclusions
In this paper, we have proposed EKENS to the problem of
source separation in nonlinear mixtures, which consists of
Gram-Charlier kernel density estimation. Also, we
compared and investigated the EKENS, EASI and
Infomax algorithms - methods for performing ICA by
minimizing the mutual information of the estimated
components. The experimental results show that EKENS
algorithm has outperformed EASI and Infomax
algorithms in a two layer nonlinear separation with lower
BER and better independence. Also, the simulation results
suggest that the EKENS algorithm is able to well-separate
2, 4 and 6 mixture signals; the EASI algorithm is able to
well-separate 2 mixed signals and to a less extent 4 mixed
signals; the linear Infomax fails to separate any of the
nonlinear mixtures. In future, the proposed EKENS will
be enhanced to deal with multi-layer nonlinear network.
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Performance Matrix, P

EKENS EASI Infomax
0.9620 0.1545 0.0554 -0.0877 1.3051 0.2750 0.0536 -0.1015 0.1424 0.1156 0.0791 0.0994
0.0138 0.9770 -0.0761 -0.0405 -0.3092 1.0223 0.0726 0.0998 0.0514 0.1417 0.0676 0.0850
-0.0006 0.1117 0.8654 0.3408 0.2080 0.2668 0.8768 0.2551 0.0796 0.1021 0.1121 0.0993
0.4626 -0.1840 -0.4033 0.9369 0.1310 -0.0682 0.1339 1.1218 0.0870 0.0842 0.0754 0.1339

Table 2: The performance matrix P for 4 mixed sources after separation. P is close to the identity matrix after rescaling and reordering.
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