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ABSTRACT

This paper will present a signal-processing

model of the Riemann Zeta function (and other related

functions), and show how the Riemann Hypothesis (RH)

can be re-cast as a signal-processing problem. This study

also yields a new signal-processing paradigm that we will

call “Discrete log-time systems”. These systems differ in

many fundamental ways from their conventional discrete-

time cousins, and their study leads one to a fascinating

world at the intersection of signal-processing and number

theory.

1. INTRODUCTION

In 1859, the mathematician Riemann wrote a startling

paper that showed that the distribution of prime numbers

could be exactly predicted by a formula that gives the

“average” distribution of primes, plus a term consisting of

an infinite summation of sinusoids that represent the

exact fluctuation around this average. The frequency of

these sinusoidal waves corresponded to the imaginary

part of the “non-trivial” zeros of a complex function

known as the eta function )(sη , where the term “non-

trivial” refers to those zeros that lie on the line RE(s) =

+1/2. Riemann asserted that in a particular strip of the

complex plane bounded by 0 < RE(s) < 1, the ONLY

zeros that are present lie on the vertical line RE(s) = ½.

This assertion is of fundamental importance in many

disparate fields, and to this day it remains one of the most

famous unproven theorems of the last 100 years.

2. THE ZETA FUNCTION )(sς

The function )(sς is a complex function of the complex

variable s given by the following formula [1];
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where s is a complex variable.

This series converges for RE(s) > 1, and therefore cannot

be directly evaluated on the “interesting” vertical line

RE(s) = ½. Zeta(s) has a simple pole at s=1.

The famous mathematician Euler showed that

zeta(s) could also be written in product form as;
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where the product term is taken overall all primes P. This

formula provides a link between the zeta function and

prime numbers, and will be derived later using simple

signal-processing flow-graph manipulations.

3. THE ETA FUNCTION )(sη

The eta function )(sη is also known as the “alternating

zeta function”, and is given by;
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)(sη is similar to )(sς except that the terms alternate

in sign. This modification results in an extension of the

region of convergence. )(sη and )(sς are related by

the following [2] ;

4) )221/()()( sss −⋅−=ης

The term on the right converges for RE(s) > 0, and

therefore )(sη can be used in place of )(sς to search

for zeros along the critical line RE(s) = ½, since both

have the same zeros on the critical line.

IV - 770-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡



4. LINK TO SIGNAL-PROCESSING NETWORKS

The work in this paper was initially motivated by the

simple desire to search for zeros of )(sη on the line

RE(s) = 1/2 using a SPICE simulator. To accomplish this,

a signal-processing network must be found whose

Laplace transform, when evaluated on the imaginary axis,

yields a complex response that is identical to evaluating

)(sη on the line RE(s) = ½. This can be done by shifting

the complex plane by -1/2, using the following variable

substitution.

1)
2
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where 's represents the Laplace transform variable.

If this variable substitution is applied to the terms
sk −

,

we get (after minor manipulations);
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)(sη can be then be written as;
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For those schooled in signal-processing theory, the term
)ln('* kse−

looks quite familiar; it is the transfer function

of a signal-processing block that has a simple delay of

ln(k) seconds. More specifically,

8)
sTeTL −=∂ ))(( ,

where L is the Laplace Transform operator and )(T∂ is

a Dirac impulse that occurs at time T. Equation 7 can

therefore be interpreted as the summation of weighted

ideal delay units, each with a Laplace transfer function of
)ln('*2/1 ksek −⋅ .

To meet the goal of using a SPICE simulator to

evaluate the magnitude response of )(sη along the line

RE(s) = ½, it is convenient to express equation 7 as the

transfer function of some network that can be easily

entered into a schematic drawing program. Equation 7

can be directly interpreted as network consisting of a sum

of linear weighted delays, as shown below.
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Figure 1. Signal-processing equivalent of the eta

function.

An “FIR” implementation is also possible, where a single

tapped delay line replaces the delay blocks of fig. 1.

The following figure shows a Spice frequency-response

simulation of the network of figure 1, with the first 90

delay terms entered as schematic blocks. The frequency is

swept from 1 to 8.5 Hz, revealing the low-frequency zeros

of the eta function. The frequencies of these notches are

exactly aligned to the published frequencies of eta(s)

zeros. As more delay terms are added, the notches

become deeper, as expected.
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Figure 2. Spice frequency sweep of circuit with 90

delay terms.

5. DISCRETE LOG-TIME (DLT) SYSTEMS

We will refer to linear networks that only contain

weighted ideal delay units with delays that fall on an

ln(k) time grid as discrete log-time (DLT) systems.

To simplify future notation, we introduce an

operator called wld(n) (for Weighted Logarithmic Delay);

9)
)ln('*2/1)( nsennwld −−=
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This equation represents a term that introduces a constant

time-domain delay of ln(n) seconds with an amplitude

weighting of n-1/2.

Using this new notation, equation 7 can be re-written;

10) L)4()3()2(1)'( wldwldwlds −+−=ς

A very important identity involving eq 9 can be derived

as follows;

11)
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This equation can be interpreted to mean that the series

connection of two delay units, one with a delay of ln(n)

and gain=1/sqrt(n) and the other with a delay of ln(m)

and gain= 1/sqrt(m) is identical to a single delay unit

with delay ln(n*m) and gain (1/sqrt(n*m)).

6. PROPERTIES OF DLT SYSTEMS

The signal-processing systems shown previously are

unique in that they all have impulse responses that are

non-zero ONLY at times equal to t = ln(K), K = 1 to

infinity. For example, the impulse response of the eta(s)

flowgraph shown in figure 1 can be determined by

inspection, and is plotted below.
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Figure 3. Impulse response of the eta network.

Systems that fall in this category have some very unique

properties, listed below.

• Series-Connection Property. Two or more DLT

systems placed in series produce an impulse

response that is also DLT.

• Time-Shift Property. If a DLT impulse response

is shifted in time by ln(kshift) seconds, then the

impulses of the resulting sequence fall on a time

grid defined by ln(k*kshift), k any integer.

Therefore, the shifted sequence is aligned with

the original sequence once every kshift samples.

• Convolution property. The impulse response of

two DLT systems in series is the convolution of

their individual impulse responses. At a

particular time t=ln(k), the output is the sum of

all paths through the combined network that

have a net delay equal to ln(k) seconds. This

only occurs if the individual components of a

particular path have wld indexes whose product

equals k (see eq. 11). One consequence of this

reasoning is that outputs at time t=ln(P), P

prime, can only have paths that include a single

delay element, since P cannot be factored.

It is instructive to compute the average power of the

eta impulse response of fig. 3. Surprisingly, the average

power converges to a constant. The energy lost in the

decaying amplitude envelope is exactly counter-balanced

by the increasing density of impulses as time progresses.

7. EULER PRODUCT SIGNAL-PROCESSING

NETWORK

Euler’s famous theorem links the zeta function to prime

numbers using the product formula below.
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all primes p.

Using the WLD notation, we can again make a signal-

processing equivalent that has the same frequency

response as eq. 12evaluated on the line RE(s) = ½. 
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The product operation above implies a series connection

of signal-processing units, shown below;

WLD(2)

+ + + +

INPUT OUTPUT
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WLD(3) WLD(5) WLD(7)WLD(2)

+ + + +

INPUT OUTPUT

. . . .

WLD(3) WLD(5) WLD(7)

Figure 4. Signal-processing equivalent to the Euler

Product-form of the zeta function.

Note that the delay units utilize ONLY the ln(prime)

delay terms, and no others. This leads to an interesting

property of this network; since every integer N has a set
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of unique prime factors, the output of the network above

has a unique path for an output impulse that occurs at

t=ln(N). For example, at time t=ln(12), the ONLY path

through the network is WLD(12) =

WLD(2)*WLD(2)*WLD(3) resulting in the following

unique impulse path;

path = twice around the WLD(2) loop and once around

the WLD(3) loop. This reduction of the zeta flowgraph to

a factored form provides the main link between DLT

systems and prime numbers.

8. THE ZETA OSCILLATOR

The Euler-zeta network of Figure 4 may be inverted,

causing all the zeroes on the imaginary axis to become

poles on the imaginary axis. The inversion of Figure 4

may be accomplished trivially using standard flow-graph

manipulation, resulting in the flow-diagram below.
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Figure 5. Inverted Euler-Zeta flow diagram.

A path analysis of figure 5 yields some surprising results.

The output at time ln(n) for an impulsive input is;

0, if n has any repeated factors;
2/1−n , if n contains an even number of unique prime

factors;

-
2/1−n , if n contains an odd number of unique prime

factors.

The figure below shows the first 30 values of the impulse

response of this network.
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Zeta Flowgraph, 1
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The inversion of the Zeta function causes zeros to become

poles. The following figure shows the resulting of taking

the DFT of the first 50000 time-domain samples of the

impulse response. The spectral peaks are exactly aligned

to known zero frequencies of the eta function.
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Figure 7. Frequency response of fig. 5.

The impulse response of the system shown in fig. 5 can

be proven to have constant average power over time. This

fact suggests that the Riemann Hypothesis is true, based

on the following reasoning. It has been proven that if the

Zeta zeros are not on the line RE(s) = ½, then they must

exist in pairs mirrored around this line; that is, if a zero is

found at s = (0.5 + epsilon) + jw1, then another zero must

exist at s = (0.5 – epsilon) + jw1. If any zeros were not on

the critical line, then by shifting the complex plane by -

1/2 and inverting the resulting system, a pair of poles

would be formed, one slightly to the left of the imaginary

axis and one slightly to the right. It follows that if the

original zeros were not on the critical line, the inverted

Zeta-oscillator system would have an impulse response

with increasing power over time.

9. CONCLUSION

This paper has introduced a novel signal-processing

paradigm that has deep links to the Riemann Zeta

function and hence to the distribution of prime numbers.

It allows for easy visualization and manipulation of

concepts that were previously buried in heavy

mathematics.
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