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ABSTRACT

Signal-to-noise ratio is an important parameter in many re-
ceivers. In this contribution, we derive a fixed-point equa-
tion whose solution coincides with the maximum-likelihood
(ML) estimate of the amplitude of a binary phase-shift key-
ing modulated signal and the variance of the additive white
Gaussian noise. The resulting fixed-point equation is effi-
ciently solved in a few iterations.

1. INTRODUCTION

Knowledge of the receiver’s signal-to-noise ratio (SNR) is
advantageous in wireless communication systems. The SNR
is rarely known a priori and must be estimated instead. For
example, SNR estimates are typically employed in soft de-
coding procedures, transmit power control, and handover.

Several authors have investigated SNR estimation algo-
rithms for BPSK and QPSK signals, cf. [1, 2, 3, 4]. Cramér-
Rao bounds for this estimation problem were derived in [5].
Most of the proposed estimators work well for high SNRs,
but exhibit significant bias in the low SNR regime which
is the regime of interest in mobile communications applica-
tions.

A notable exception is the contribution by Li, DiFazio,
and Zeira [4] who derived an estimator with low bias in the
region of low SNRs. In [4] a necessary condition was de-
rived for the maximum-likelihood (ML) estimate and the re-
sulting equation was solved iteratively. In this contribution,
we follow the same line of attack, but the iterative algorithm
which we propose and investigate is different.

First, we derive a sufficient statistic for the problem at
hand. Next, we reformulate the necessary condition for
the ML estimate as a fixed-point equation which links the
decision-directed estimate to the ML estimate. The result-
ing two-by-two system of fixed-point equations is solved in
a few iterations in a natural way.

�The work on this contribution was funded by Kplus, Infineon Tech-
nologies, and ARC Seibersdorf Research GmbH within the ftw. project
“Smart Antennas for UMTS FDD”.

2. PROBLEM FORMULATION

We consider a binary phase shift keying signal in additive
white Gaussian noise. We observe realizations ���� � � � � ���
of the following model
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where� is a real-valued unknownparameter,��� ��� � � � � ��
are discrete i.i.d. random variables with
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and ���� ��� � � � � ��� is a multi-variate zero-mean Gaussian
random vector with covariance matrix 	 �

��. We are inter-
ested in estimating the unknown parameters � and 	 �, and
the signal to noise ratio 
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3. PARAMETER ESTIMATION

Proposition 1 We say that � is a Bigaussian random vari-
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Without loss of generality, we assume � � � and 	 � �.

Proposition 2 We define the first and second absolute mo-
ments of � through1
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The log-likelihood function ���� 	�� of an i.i.d. sample
� � ���� � � � � ��� is
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1The error function is related to the �-function through ������ � ��
����

�
��.
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Now we use
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and we see that the log-likelihood can be written as
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Theorem 1 Given an i.i.d. sample� � ���� � � � � ��� drawn
from a Bigaussian distribution, then � �� � � ������ � � � � �����
is a sufficient statistic.

The proof follows from (7) where it is seen that the log-
likelihood function depends on the data through �� ��.
Theorem 2 The conditional ML estimates, conditioned on
the realization � � ���� ��� � � � � ��� are
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If 	� � �� then the conditional ML estimates are consistent
(unbiased and their variance decreases for ���).

The proof is rather standard and omitted here.

Theorem 3 The decision-directed estimates are obtained
by using hard-decision estimates �� instead of the true re-
alization in the conditional ML estimator.
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are asymptotically unbiased in the limit ��� ��.

The proof for ��� follows from the fact that � ����� � � and
taking the limit � � � in (3),
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which results in
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In the expection operation we need to distinguish between
the cases 
 �  and 
 ��  and we arrive at the following
nice result
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we use the following bounds on the error function for � � �
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for proving that ������ ���� ��� � �.

Theorem 4 The ML estimates for ��� ��� satisfy the condi-
tions
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This is easily proved by setting the gradient of (7) to zero.
Note that the substitution of (18) in (19) reveals
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which is intuitive.

Theorem 5 The ML estimates ����� ��
�

�
� and the decision-

directed estimates ����� ����� are linked by conditions
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input ��� � � � � �� �observed sample�
input � �number of iterations�
input ���� ���� � from Eqs.(11) and (12) �
� �� ���
� �� ����
for � �� � to �

	� �� �����������
�	� �for � � �� � � � � �	
� �� ��

����
� �for � � �� � � � � �	

Æ �� �
�

��
���

�����

� �� ��� � �Æ�
� �� ���

� 
���� � ��� ���	
�� � �Æ

end
��� �� �
���� �� �
output ���� ����

Table 1. Batch Algorithm for BPSK

Corrollary 1 The decision-directed estimates ����� ��
�
�	 de-

fine the following bounds on the ML estimates ����� ��
�
�	,
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These bounds are obtained from Eqs.(21) and (22) by using
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4. EVALUATION OF THE ML ESTIMATES

In [4] a low bias algorithm for BPSK was proposed. The
iteration procedure in [4] relies on a bisection method with
the difficulty to find a suitable starting point for the iteration.

Proposition 3 We interprete (21) and (22) as a � � � non-
linear system of fixed-point equations for the ML estimates.
This results in the iterative algorithm in Table 1 for eval-
uating the ML estimates ���� ��

�
� given the decision-directed

estimates ���� ��
�
� .

Proposition 4 By means of eq. (20), the iteration scheme
can be simplified to the Simplified Batch Algorithm given in
Table 2.

Theorem 6 The Simplified Batch Algorithm in Table 2 con-
verges unconditionally to the ML estimate.

This is proved by showing that the � � � mapping defined
by
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Table 2. Simplified Batch Algorithm for BPSK

is contracting. Whether the map is contracting or not is
determined by the inequality
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After some manipulations, the convergence condition for
the Simplified Batch Algorithm in Table 2 reduces to
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�����
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�
� . Now, we observe that ���
 �������	 is strictly

less than ������ for all real-valued �. Hence � � �����,
and it is concluded that the iteration in Table 2 converges.

5. SIMULATION RESULTS

Suppose, our sample size is � � �� and � � �. We have
carried out 200 Monte Carlo simulations (for each value of
��) of the approximate ML estimates ���� ���� compared them
to the decision-directed estimates ���� ��

�
� . The approximate

ML estimates are obtained from the iterative algorithm us-
ing � � � and � � �� iterations, respectively. The results
for the mean squared error are shown in Fig. 1 vs. the true
signal to noise ratio �. In this figure, the decision-directed
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estimates are denoted by (m0,v0) which are shown as blue
circles (Æ), approximate ML estimates for � � � iterations
are denoted by (m1,v1) which are shown as red crosses (�),
and approximate ML estimates for � � �� iterations are
denoted by (m2,v2) wich are shown as black diamonds (�),
respectively. The resulting estimates ��� �� ���

�
����

�
for the

SNR are compared in Fig. 2 for a range of true � � �����

values.
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Fig. 1. Mean squared error of estimates for � and � � vs. �

6. CONCLUSION

We derive a fixed-point equation whose solution is the ML
estimate of the amplitude of a BPSK modulated signal and
the variance of the additive white Gaussian noise. An itera-
tive algorithm is proposed for solving the fixed-point equa-
tion. Its convergence is proven and the resulting estima-
tor performance is analyzed in simulations. Significant im-
provements in estimator fidelity are evident when compared
to the decision-directed estimates even after small numbers
of iterations.
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