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ABSTRACT

Signal-to-noise ratio is an important parameter in many re-
ceivers. In this contribution, we derive a fixed-point equa-
tion whose solution coincides with the maximum-likelihood
(ML) estimate of the amplitude of a binary phase-shift key-
ing modulated signal and the variance of the additive white
Gaussian noise. The resulting fixed-point equation is effi-
ciently solved in a few iterations.

1. INTRODUCTION

Knowledge of the receiver’s signal-to-noise ratio (SNR) is
advantageous in wireless communication systems. The SNR
is rarely known a priori and must be estimated instead. For
example, SNR estimates are typically employed in soft de-
coding procedures, transmit power control, and handover.

Several authors have investigated SNR estimation algo-
rithms for BPSK and QPSK signals, cf. [1, 2, 3, 4]. Cramér-
Rao bounds for this estimation problem were derived in [5].
Most of the proposed estimators work well for high SNRs,
but exhibit significant bias in the low SNR regime which
is the regime of interest in mobile communications applica-
tions.

A notable exception is the contribution by Li, DiFazio,
and Zeira [4] who derived an estimator with low bias in the
region of low SNRs. In [4] a necessary condition was de-
rived for the maximume-likelihood (ML) estimate and the re-
sulting equation was solved iteratively. In this contribution,
we follow the same line of attack, but the iterative algorithm
which we propose and investigate is different.

First, we derive a sufficient statistic for the problem at
hand. Next, we reformulate the necessary condition for
the ML estimate as a fixed-point equation which links the
decision-directed estimate to the ML estimate. The result-
ing two-by-two system of fixed-point equations is solved in
a few iterations in a natural way.
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2. PROBLEM FORMULATION

We consider a binary phase shift keying signal in additive

white Gaussian noise. We observe realizations (z1, ..., ;)
of the following model
Xk::U/Bk+Uk7 (k:17277n) (D
where p is a real-valued unknown parameter, B1, Bs, ..., B,
are discrete i.i.d. random variables with
1
P[Bk = —1] = P[Bk = +1] = 5

and (Uy, U, . .., U,) is a multi-variate zero-mean Gaussian
random vector with covariance matrix o 21,,. We are inter-
ested in estimating the unknown parameters y and o 2, and

2
the signal to noise ratio y = £5.

3. PARAMETER ESTIMATION

Proposition 1 We say that X is a Bigaussian random vari-
able, X ~ BG(u,0?) if its density is described by

_n2 2
pexp (—45) e (—5255)
S 2 oV 2 2 ovV2m ’
Without loss of generality, we assume p > 0 and o > 0.

fx(@)

2)

Proposition 2 We define the first and second absolute mo-
ments of X through!

_ _ 1t 20 I
¢ = B[X] =04 @

The log-likelihood function L(p,o?) of an ii.d. sample
X =(x1,...,2,) 18

L(p,

n

) = —nlogo +

ot (o (- g (187

I'The error function is related to the Q-function through erf(z) = 1 —

2Q(zv/2).

>l

k=1
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Now we use
log(e‘s1 + e‘sz) = max(d1,d2) + log(1 + 67\517(52\) (6)

and we see that the log-likelihood can be written as

n _ )2
L(p,0*) = —-nlogo — Z W
k=1
n
2
Z log <1 + exp (—M)) 7
o
k=1
Theorem 1 Givenani.i.d. sample X = (x1,...,x,) drawn
from a Bigaussian distribution, then T (X) = (|z1],...,|zxa])

is a sufficient statistic.

The proof follows from (7) where it is seen that the log-
likelihood function depends on the data through |z |-

Theorem 2 The conditional ML estimates, conditioned on

the realization b = (by,bs,...,by,) are
ip(b) = 1 2”: b 8
fto = - KTk 3)
k=1
n
k=1

If By, = by, then the conditional ML estimates are consistent
(unbiased and their variance decreases for n — o).

The proof is rather standard and omitted here.

Theorem 3 The decision-directed estimates are obtained
by using hard-decision estimates b instead of the true re-
alization in the conditional ML estimator.

by = sign(zy), (k=1,2,...,n), (10)
i o~ Ly
fio = fio(b) = ﬁZ|$k|a (11
k=1
~ ~ 7 1 - ~
B=ab) = = S(ml ). (2)
k=1

are asymptotically unbiased in the limit p/o — oo.

The proof for fig follows from the fact that E [fig] = 6 and
taking the limit ¢ — 0 in (3),

lim 0 = (13)

a—0

The proof for 62 follows from

R 1 < .
El65] = — Y E[lzl’] - % E[ag] (14
k=1

which results in

n n

ZZE |£Uk:Ul|
k 11=1

In the expection operation we need to distinguish between
the cases k = [ and k # [ and we arrive at the following
nice result

E [63] :nn o0+ 41?)

El6y] =" +pu* -0 =p—6>. (15)
After taking the limit u — oo,

lim (¢ — %) = o? + hm e(p,0?) (16)

[—00

where

o) B ()

we use the following bounds on the error function for x > 0

1 2 2 2
1- - f 1-—— ——= e 17
:z:\/7_re <erf(z) < :z:\/_< a:2>e A7)
for proving that lim ,_,  €(p1, 0%) = 0.
Theorem 4 The ML estimates for (u,c?) satisfy the condi-
tions
N 1~ 1 —exp(=2ju|ax|/67)
- fonl/f),
1+ exp(=2/u|zi|/67)
_ _Zxktah<‘“ ). as)
~2 2, a2 H1Tk
= = tan 19
R A R

This is easily proved by setting the gradient of (7) to zero.
Note that the substitution of (18) in (19) reveals

T .
==y at - j 20)
k=1

which is intuitive.

Theorem 5 The ML estimates (fi1,67) and the decision-
directed estimates (fio, 63) are linked by conditions

. 2 exp(—2f1|zx|/0%)
= - — 21
H Ho Z1+exp( 2|z /52 )"”( )
. n—1,, . .
o7 = (65 + (fn — fi0)?) +
41 exp(=2ju|zx|/57)
x|, 22
Z1+exp (=241 | x| /6 1)' el (22
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input x4, . .., x, {observed sample}
input N {number of iterations}
input fig, 62 { from Egs.(11) and (12) }
m = ﬂ()
v =63
fori:=1to N
er = exp( 2m|z|/v), (fork=1,...,n)
w = 1+6k (fork=1,...,n)
§ = 1 Z we| Tk
k=1
m = ﬂo — 2(5
v = nnl [0’5 —+ (m — ﬂo)z] —+ 4md
end
ﬂl =m
62 =
output jiy, 63

Table 1. Batch Algorithm for BPSK

Corrollary 1 The decision-directed estimates (fig, 63) de-
fine the following bounds on the ML estimates (ji1,6%),

< o, (23)
n—1, 5 5 ~2
(65 + fig) + 245 . (24)

These bounds are obtained from Eqs.(21) and (22) by using

0 <« oetn 1

f . (25
T+ exp(—z) < 2 orxz>0. (25)

4. EVALUATION OF THE ML ESTIMATES

In [4] a low bias algorithm for BPSK was proposed. The
iteration procedure in [4] relies on a bisection method with
the difficulty to find a suitable starting point for the iteration.

Proposition 3 We interprete (21) and (22) as a 2 x 2 non-
linear system of fixed-point equations for the ML estimates.
This results in the iterative algorithm in Table 1 for eval-
uating the ML estimates (i, 63 given the decision-directed
estimates Jig, 03.

Proposition 4 By means of eq. (20), the iteration scheme
can be simplified to the Simplified Batch Algorithm given in
Table 2.

Theorem 6 The Simplified Batch Algorithm in Table 2 con-
verges unconditionally to the ML estimate.

This is proved by showing that the 2 x 2 mapping defined
by

(i +1) = f(pa(i),61(i)) (26)
61(+1) = g(u(i),67(i)) 27)

input z1, . .., x, { observed sample }
input N { number of iterations }
input ig, 63 { from Eqs.(11) and (12) }
m = ﬂ()
v o= 03
L1 T
forz =1toN
er = exp(—2m|z|/v), (fork=1,...,n)
wg = 1iek, (fork=1,...,n)
§ = LY wplay
k=1
m = ﬂo — 2(5,
v = E-m?
end
ﬂl =m
6% :=w
output iy, 63

Table 2. Simplified Batch Algorithm for BPSK

is contracting. Whether the map is contracting or not is
determined by the inequality

det ( 8ug k)f 80'12(1» f )

smmd T

D= <1l. (@28

After some manipulations, the convergence condition for
the Simplified Batch Algorithm in Table 2 reduces to

6W A ﬂ i 137k
D = — === 2
963 Z o1 cosh(fiyzy, /0?)? 29)
1S 2
) ]; cosh(ay)? (30)

h 2% =

n ~
S 2/11 |2k | exp(— 2#1\$k|/01)

1
noe 53 (1+exp(—2f1|zk|/67))

wit s|zk| and a, =
fi1zy /0. Now, we observe that 2a2/ cosh?(a) is strictly
less than 0.8785 for all real-valued a. Hence D < 0.879,

and it is concluded that the iteration in Table 2 converges.

5. SIMULATION RESULTS

Suppose, our sample size is n = 80 and ;x = 1. We have
carried out 200 Monte Carlo simulations (for each value of
0?) of the approximate ML estimates fi1, 67 compared them
to the decision-directed estimates fig, 3. The approximate
ML estimates are obtained from the iterative algorithm us-
ing N = 5 and N = 20 iterations, respectively. The results
for the mean squared error are shown in Fig. 1 vs. the true
signal to noise ratio . In this figure, the decision-directed
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estimates are denoted by (m0,v0) which are shown as blue
circles (o), approximate ML estimates for N = 5 iterations
are denoted by (m1,v1) which are shown as red crosses (x),
and approximate ML estimates for NV = 20 iterations are
denoted by (m2,v2) wich are shown as black diamonds (),
respectively. The resulting estimates 4, := fi7 /67 for the
SNR are compared in Fig. 2 for a range of true v = p? /o>
values.

Mean Squared Error of Estimated p and o2

MSE((c" %)

“2/02

Fig. 1. Mean squared error of estimates for y and 2 vs.

6. CONCLUSION

We derive a fixed-point equation whose solution is the ML
estimate of the amplitude of a BPSK modulated signal and
the variance of the additive white Gaussian noise. An itera-
tive algorithm is proposed for solving the fixed-point equa-
tion. Its convergence is proven and the resulting estima-
tor performance is analyzed in simulations. Significant im-
provements in estimator fidelity are evident when compared
to the decision-directed estimates even after small numbers
of iterations.
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