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ABSTRACT

Wireless sensor networks deployed to perform surveillance and mon-
itoring tasks have to operate under stringent energy and bandwidth
limitations. These motivate well distributed estimation scenarios
where sensors quantize and transmit only one, or a few bits per ob-
servation, for use in forming parameter estimators of interest. In a
companion paper, we developed algorithms and studied interesting
tradeoffs that emerge even in the simplest distributed setup of es-
timating a scalar location parameter in the presence of zero-mean
additive white Gaussian noise of known variance. Herein, we de-
rive distributed estimators based on binary observations along with
their error-variance performance for unknown noise pdfs.

1. INTRODUCTION

Wireless sensor networks (WSNs) consist of low-cost energy-limi-
ted transceiver nodes spatially deployed in large numbers to ac-
complish monitoring, surveillance and control tasks through coop-
erative actions [4]. The potential of WSNs for surveillance has by
now been well appreciated especially in the context of data fusion
and distributed detection; e.g., [11, 12]. However, except for recent
works where spatial correlation is exploited to reduce the amount of
information exchanged [1, 2, 7, 8], use of WSNs for the equally im-
portant problem of distributed parameter estimation remains largely
uncharted. When sensors have to quantize measurements in order
to save energy and bandwidth, estimators based on quantized sam-
ples and pertinent tradeoffs have been studied [5, 6]. It is worth
stressing that in these contributions as well as in the present work
that deals with WSN-based distributed parameter acquisition under
bandwidth constraints, the notions of quantization and estimation
are intertwined. In fact, quantization becomes an integral part of
estimation as it creates a set of binary observations based on which
the estimator must be formed – a problem distinct from parameter
estimation based on the unquantized observations.

In a companion paper we studied estimation of a scalar mean-
location parameter in the presence of zero-mean additive white Gaus-
sian noise [10]. We proved that when the dynamic range of the un-
known parameter is comparable to the noise standard deviation, es-
timation based on sign quantization of the original observations ex-
hibits variance almost equal to the variance of the (clairvoyant) es-
timator based on unquantized observations. We further established
that under signal-to-noise ratio (SNR) conditions encountered with

∗ Work in this paper was prepared through collaborative participation
in the Communications and Networks Consortium sponsored by the U. S.
Army Research Laboratory under the Collaborative Technology Alliance
Program, Cooperative Agreement DAAD19-01-2-0011. The U. S. Gov-
ernment is authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation thereon.

WSNs, even a single bit per sensor can have a variance close to
the clairvoyant estimator. In this paper, we derive distributed pa-
rameter estimators based on binary observations along with their
error-variance performance when the noise pdf is unknown. Inter-
estingly, for this problem it is still true that transmitting a few bits
(or even a single bit) per sensor can approach under realistic condi-
tions the performance of the estimator based on unquantized data.

For comparison purposes we first analyze mean-location pa-
rameter estimation in the presence of known univariate but gener-
ally non-Gaussian noise pdfs (Section 3); and subsequently address
mean-location parameter estimators based on binary observations
when the noise pdf is unknown (Section 4). Simulations corrobo-
rate our theoretical findings in Section 5, and we conclude the paper
in Section 6.

2. PROBLEM STATEMENT

Consider a WSN consisting of N sensors deployed to estimate a
deterministic parameter θ. The nth sensor observation is

x(n) = θ + w(n), n = 0, 1, . . . , N − 1 , (1)

where w(n) denotes zero-mean noise with pdf pw(w). We further
assume that w(n1) is independent of w(n2) for n1 �= n2; i.e., noise
variables are independent across sensors.

Due to bandwidth limitations, the observations x(n) have to be
quantized and estimation of θ can only be based on these quantized
values. We will henceforth think of quantization as the construction
of a set of indicator variables

bk(n) = 1{x(n) ∈ Bk(n)}, k = 1, . . . , K , (2)

taking the value 1 when x(n) belongs to the region Bk(n) =
(τk,∞), and 0 otherwise. Estimation of θ will rely on this set
of binary variables {bk(n), k = 1, . . . , K}N−1

n=0 . The latter are
Bernoulli distributed with parameters qk(n) satisfying

qk(n) := Pr{bk(n) = 1} = Pr{x(n) > τk}. (3)

The problem addressed in this paper is the construction of estima-
tors θ̂ based on the binary observations {bk(n), k = 1, . . . , K}N−1

n=0 ,
when the noise pdf, pw(w) is unknown. We will also study their
variances and prove that for such pdf-unaware estimators it can
come close to the clairvoyant Cramer-Rao Lower Bound (CRLB)
based on {x(n)}N−1

n=0 and complete knowledge of pw(w) in certain
applications of practical interest.

3. KNOWN NOISE PDF

When the noise pdf is known, we will rely on a single region B1(n)
in (2) to generate a single bit b1(n) per sensor, using a threshold τc
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Fig. 1. When the noise pdf is unknown numerically integrating the
CCDF using the trapezoidal rule yields an approximation of the
mean.

common to all N sensors: B1(n) := Bc = (τc,∞), ∀n. Based on
these binary observations, b1(n) := 1{x(n) ∈ (τc,∞)} received
from all N sensors, the fusion center seeks estimates of θ.

Let Fw(u) :=
∫ ∞

u
pw(w) dw denote the Complementary Cu-

mulative Distribution Function (CCDF) of the noise. Using (3), we
can express the Bernoulli parameter as, q1 =

∫ ∞
τc−θ

pw(w)dw =

Fw(τc − θ); and its Maximum Likelihood Estimator (MLE) as
q̂1 = N−1 ∑N−1

n=0 b1(n). Invoking now the invariance property
of MLE it follows readily that the MLE of θ is given by [10]1:

θ̂ = τc − F−1
w

(
1

N

N−1∑
n=0

b1(n)

)
. (4)

Furthermore, it can be shown that the CRLB, that bounds the vari-
ance of any unbiased estimator θ̂ based on {b1(n)}N−1

n=0 is [10]

var(θ̂) ≥ 1

N

Fw(τc − θ)[1 − Fw(τc − θ)]

p2
w(τc − θ)

:= B(θ) . (5)

If the noise is Gaussian, and we define the σ-distance between the
threshold τc and the (unknown) parameter θ as ∆c := (τc − θ)/σ,
then (5) reduces to

B(θ) =
σ2

N

2πQ(∆c)[1 − Q(∆c]

e−∆c
:=

σ2

N
D(∆c), (6)

with Q(u) := (1/
√

2π)
∫ ∞

u
e−w2/2 dw.

The bound B(θ) is the variance of x̄, scaled by the factor D(∆c);
recall that var(x̄) = σ2/N [3, p.31]. Optimizing B(θ) with respect
to ∆c, yields the optimum at ∆c = 0 and the minimum value

Bmin =
π

2

σ2

N
. (7)

Eq. (7) reveals something unexpected: relying on a single bit per
x(n), the estimator in (4) incurs a minimal (just a π/2 factor) in-
crease in its variance relative to the clairvoyant x̄ which relies on
the unquantized data x(n). But this minimal loss in performance
corresponds to the ideal choice ∆c = 0, which implies τc = θ
and requires perfect knowledge of the unknown θ for selecting the
quantization threshold τc.

A closer look at B(θ) in (5) will confirm that the loss can be
huge if τc − θ � 0. Indeed, as τc − θ → ∞ the denominator
in (5) goes to zero faster than its numerator, since Fw is the integral

1Although related results are derived in [10, Prop.1] for Gaussian noise,
it is straightforward to generalize the referred proof to cover also non-
Gaussian noise pdfs.

of the non-negative pdf pw; and thus, B(θ) → ∞ as τc − θ →
∞. The implication of the latter is twofold: i) since it shows up
in the CRLB, the potentially high variance of estimators based on
quantized observations is inherent to the possibly severe bandwidth
limitations of the problem itself and is not unique to a particular
estimator; ii) for any choice of τc, the fundamental performance
limits in (5) are dictated by the end points τc − Θ1 and τc − Θ2

when θ is confined to the interval [Θ1, Θ2]. On the other hand, how
successful the τc selection is depends on the dynamic range |Θ1 −
Θ2|. Notice that in such joint quantization-estimation problems
one faces two sources of error: quantization and noise. To account
for both, the proper figure of merit for estimators based on binary
observations is what we will term quantization signal-to-noise ratio
(Q-SNR):

γ :=
|Θ1 − Θ2|2

σ2
; (8)

which for WSN is expected to be in the low to moderate range.

4. UNKNOWN NOISE PDF

In certain applications it may not be reasonable to assume knowl-
edge about the noise pdf pw(w). These cases require non - para-
metric approaches as the one pursued in this section.

We assume that pw(w) has zero mean so that θ in (1) is iden-
tifiable. Let px(x) and Fx(x) denote the pdf and CCDF of the
observations x(n). As θ is the mean of x(n), we can write

θ :=

∫ +∞

−∞
xpx(x) dx = −

∫ +∞

−∞
x

∂Fx(x)

∂x
dx

=

∫ 1

0

F−1
x (v) dv , (9)

where in establishing the second equality we used the fact that the
pdf is the negative derivative of the CCDF, and in the last equality
we introduced the change of variables v = Fx(x). But note that the
integral of the inverse CCDF can be written in terms of the integral
of the CCDF as (see also Fig. 1)

θ = −
∫ 0

−∞
[1 − Fx(u)] du +

∫ +∞

0

Fx(u) du, (10)

allowing one to express the mean θ of x(n) in terms of its CCDF.
To avoid carrying out integrals with infinite range, let us assume
that x(n) ∈ (−T, T ) which is always practically satisfied for T
sufficiently large, so that we can rewrite (10) as

θ =

∫ T

−T

Fx(u) du − T. (11)

Numerical evaluation of the integral in (11) can be performed us-
ing a number of known techniques. Let us consider an ordered set
of interior points {τk}K

k=1 along with end-points τ0 = −T and
τK+1 = T . Relying on the fact that Fx(τ0) = Fx(−T ) = 1 and
Fx(τK+1) = Fx(T ) = 0, application of the trapezoidal rule for
numerical integration yields (see also Fig. 1),

θ =
1

2

K∑
k=1

(τk+1 − τk−1)Fx(τk) − T + ea, (12)

with ea denoting the approximation error. Certainly, other methods
like Simpson’s rule, or the broader class of Newton-Cotes formulas,
can be used to further reduce ea.
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Whichever the choice, the key is that binary observations con-
structed from the region Bk := (τk,∞) have Bernoulli parameters

qk := Pr{x(n) > τk} = Fx(τk). (13)

Inserting the non-parametric estimators F̂x(τk) = q̂k in (12), our
parameter estimator when the noise pdf is unknown takes the form:

θ̂ =
1

2

K∑
k=1

q̂k(τk+1 − τk−1) − T. (14)

Since q̂k’s are unbiased, (12) and (14) imply that E(θ̂) = θ + ea.
Being biased, the proper performance indicator for θ̂ in (14) is the
Mean Squared Error (MSE), not the variance.

Maintaining the bandwidth constraint of 1 bit per sensor (i.e.
K = 1), let us divide the N sensors in K subgroups containing
N/K sensors each, and define the regions

B1(n) := Bk = (τk,∞), n = (k−1)(N/K), . . . , k(N/K)−1;
(15)

the region B1(n) will be used by sensor n to construct and transmit
the binary observation b1(n). Herein, the unbiased estimators of
the Bernoulli parameters qk are

q̂k =
1

(N/K)

k(N/K)−1∑
n=(k−1)(N/K)

b1(n), k = 1, . . . , K, (16)

and are used in (14) to estimate θ. It is easy to verify that var(q̂k) =
qk(1−qk)/(N/K), and that q̂k1 and q̂k2 are independent for k1 �=
k2.

The resultant MSE, E[(θ − θ̂)2], will be bounded as follows2.

Proposition 1 Consider the estimator θ̂ given in (14), with q̂k as
in (16). Assume that for T sufficiently large and known px(x) =
0, for |x| ≥ T ; the noise pdf has bounded derivative ṗw(u) :=
∂pw(w)/∂w; and define τmax := maxk{τk+1 − τk} and ṗmax :=
maxu∈(−T,T ){ṗw(u)}. The MSE is given by,

E[(θ − θ̂)2] = |ea|2 + var(θ̂), (17)

with the approximation error ea and var(θ̂), satisfying

|ea| ≤ T ṗmax

6
τ2
max, (18)

var(θ̂) =
K∑

k=1

(τk+1 − τk−1)
2

4

qk(1 − qk)

N/K
, (19)

with {τk}K
k=1 a grid of thresholds in (−T, T ) and {qk}K

k=1 as
in (13).

Note from (19) that the larger contributions to var(θ̂) occur
when qk ≈ 1/2, since this value maximizes the coefficients qk(1−
qk); equivalently, this happens when the thresholds satisfy τk ≈ θ
[c.f. (13)]. Thus, as with the case where the noise pdf is known,
when θ belongs to an a priori known interval [Θ1, Θ2], this knowl-
edge must be exploited in selecting thresholds around the likeliest
values of θ.

On the other hand, note that the var(θ̂) term in (17) will dom-
inate |ea|2, because |ea|2 ∝ τ4

max as per (18). To clarify this

2Omitted due to space considerations, proofs pertaining to claims in this
work can be found in [9]

point, consider an equispaced grid of thresholds with τk+1 − τk =
τ = τmax, ∀k, such that τmax = 2T/(K + 1) < 2T/K. Us-
ing the (loose) bound qk(1 − qk) ≤ 1/4, the MSE is bounded by
[c.f. (17) - (19)]

E[(θ − θ̂)2] <
4T 6ṗ2

max

9K4
+

T 2

N
. (20)

The bound in (20) is minimized by selecting K = N , which amounts
to having each sensor use a different region to construct its binary
observation. In this case, |ea|2 ∝ N−4 and its effect becomes prac-
tically negligible. Moreover, most pdfs have relatively small deriva-
tives; e.g., for the Gaussian pdf we have ṗmax = (2πeσ4)−1/2.
The integration error can be further reduced by resorting to a more
powerful numerical integration method, although its difference with
respect to the trapezoidal rule will not have any impact in practice.

Since K = N , the selection τk+1 − τk = τ , ∀k, yields

θ̂ = τ

N−1∑
n=0

b1(n) − T = T

[
2

N + 1

N−1∑
n=0

b1(n) − 1

]
, (21)

that does not require knowledge of the threshold used to construct
the binary observation at the fusion center of a WSN. This feature
allows for each sensor to randomly select its threshold without us-
ing values pre-assigned by the fusion center; see also [5] for related
random quantization algorithms.
Remark 1: While e2

a ∝ T 6 seems to dominate var(θ̂) ∝ T 2

in (20), this is not true for the operational low-to-medium Q-SNR
range for distributed estimators based on binary observations. This
is because the support 2T over which Fx(x) in (11) is non-zero
depends on σ and the dynamic range |Θ1 −Θ2| of the parameter θ.
And as the Q-SNR decreases, T ∝ σ. But since ṗmax ∝ σ−2, e2

a ∝
σ2/N4 which is negligible when compared to the term var(θ̂) ∝
σ2/N .
Remark 2: Pdf-unaware bandwidth-constrained distributed esti-
mation was introduced in [5], where it was referred to as universal.
At the (relatively minor) restriction of deterministically-assigned
thresholds, the estimator in (21) achieves a four times smaller vari-
ance than the universal estimator in [5] which can afford randomly
assigned thresholds – though it is true that θ̂ in (21) can also be im-
plemented with randomly assigned thresholds, its MSE in (20) has
been derived for deterministically assigned ones. The reason be-
hind this noticeable performance improvement is that the approach
here implicitly utilizes the data pdf (through the numerical approx-
imation of the CCDF) in constructing the asymptotic MLE of (14).
The only extra condition required over [5] is for the pdf to be differ-
entiable, which is typically satisfied in practice. Also, the approach
herein is readily generalizable to estimation of vector parameters –
a practical scenario where universal estimators like those in [5] are
yet to be found.

Apart from providing useful bounds on the finite-sample per-
formance, eqs. (18), (19), and (20) establish asymptotic optimality
of the θ̂ estimators in (14) and (21) as summarized in the following:

Corollary 1 Under the assumptions of Propositions 1 and the con-
ditions: i) τmax ∝ K−1; and ii) T 2/N, T 6/K4 → 0 as T, K, N →
∞, the estimators θ̂ in (14) and (21) are asymptotically (as K, N →
∞) unbiased and consistent in the mean-square sense.

The estimators in (14) and (21) are consistent even if the sup-
port of the data pdf is infinite, as long as we guarantee a proper rate
of convergence relative to the number of sensors and thresholds..
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Fig. 2. The variance of the estimators in (4) and (21) are close to
the sample mean estimator variance (σ2 := E[w2(n)] = 1, T = 3,
θ ∈ [−1, 1]).

Remark 3: To compare the estimators in (4) and (21), consider
that θ ∈ [Θ1, Θ2] = [−σ, σ], and that the noise is Gaussian with
variance σ2, yielding a Q-SNR γ = 4. No estimator can have
variance smaller than var(x̄) = σ2/N ; however, for the (medium)
γ = 4 Q-SNR value they can come close. For the known pdf esti-
mator in (4), the variance is var(θ̂) ≈ 2σ2/N . The unknown pdf
estimator in (21) requires an assumption about the essentially non-
zero support of the Gaussian pdf. If we suppose that the noise pdf
is non-zero over [−2σ, 2σ], the corresponding variance becomes
var(θ̂) ≈ 9σ2/N . The penalties due to the transmission of a single
bit per sensor with respect to x̄ are approximately 2 and 9. While
the increasing penalty is expected as the uncertainty about the noise
pdf increases, the relatively small loss is rather unexpected.

5. SIMULATIONS

Fig. 2 depicts theoretical bounds and simulated variances for the
estimators (4) and (21) for an example Q-SNR γ = 4. The sam-
ple mean estimator variance, var(x̄) = σ2/N , is also depicted for
comparison purposes. The simulations corroborate the implications
of Remark 3, reinforcing the idea that for low to medium Q-SNR
problems quantization to a single bit per observation leads to min-
imal losses in variance performance. Note that for this particular
example the unknown pdf variance bound, (20), overestimates the
variance by a factor of roughly 1.2 for the uniform case and roughly
2.6 for the Gaussian case.

6. CONCLUSIONS

We were motivated by the need to effect energy savings in a wire-
less sensor network deployed to estimate parameters of interest in a
decentralized fashion. To this end, we developed parameter estima-
tors and derived their fundamental variance limits under bandwidth
constraints. The latter were adhered to by quantizing each sen-
sor’s observation to one or a few bits. By jointly accounting for
the unique quantization-estimation tradeoffs present, these bit(s)
per sensor were first used to derive distributed maximum likelihood
estimators (MLEs) for scalar mean-location parameters in the pres-

ence of generally non-Gaussian noise when the noise pdf is com-
pletely known. We latter derived estimators when the noise pdf
is unknown through a non-parametric estimator of the unknown
complementary cumulative distribution function based on quan-
tized (binary) observations.

In both cases, the resulting estimators turned out to exhibit
comparable variances that can come surprisingly close to the vari-
ance of the clairvoyant estimator which relies on unquantized ob-
servations. This happens when the SNR capturing both quantiza-
tion and noise effects assumes low-to-moderate values3.
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