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ABSTRACT

The expectation-maximization (EM) algorithm is often used
in maximum likelihood (ML) estimation problems with miss-
ing data. However, EM can be rather slow to converge.
In this paper, we introduce a new algorithm for parame-
ter estimation problems with missing data , which we call
Equalization-Maximization (EqM) (for reasons to be ex-
plained later). We derive the EqM algorithm in a general
context and illustrate its use in the specific case of Gaussian
autoregressive time series with a varying amount of missing
observations. In the presented examples, EqM outperforms
EM in terms of computational speed, at a comparable esti-
mation performance.

1. INTRODUCTION AND PRELIMINARIES

Consider a parameter estimation problem in which � de-
notes the � � � � vector of available data samples, and � the� � � vector of unknown parameters. Let � be an � � � �
vector which is such that if it were available then solving
the ML estimation problem based on � and � would be
relatively easy. To be more specific, let 	 � 
 � � � � denote
the probability density function (pdf) of the available data;
when viewed as a function of � , for given � , 	 � 
 � � � � is the
so-called likelihood function. Similarly, let 	 � 
 � 
 � � � � � �
denote the joint pdf of � and � . Generally, � is assumed to
have the property that solving the problem

� � �� 	 � 
 � 
 � � � � � � (1)

is much easier than maximizing 	 � 
 � � � � to obtain the ML
estimate of � , i.e.,

� � �� 	 � 
 � � � � � (2)
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In particular, in several cases of interest the solution of
(1) can be obtained in closed form, whereas the maximiza-
tion of (2) would require usage of nonlinear programming
algorithms. Note that, although this scenario is most rel-
evant to missing data problems, � can be in principle any
vector of variables with the above property, not necessarily
a vector comprising physically missing samples of a data
string.

The EM algorithm is an iterative solver of (2) that con-
sists of an E-step and M-step (see., e.g., [1], [2]). In many
cases (but not always) the E-step of EM is relatively easy
to perform and the complexity of the M-step is comparable
with that of solving the complete-data problem in (1). Fur-
thermore, EM has the desirable property of increasing the
available-data likelihood at each iteration. However, EM
may converge rather slowly and, moreover, it may not con-
verge to the global maximum of 	 � 
 � � � � .

In this paper, we introduce a different type of algorithm
that appears to be faster than EM, at a comparable estima-
tion performance, and which additionally does not require
an E-step as in EM. In the next section, we present briefly
the new algorithm along with two other less successful at-
tempts to enhance the computational performance of EM. In
Section 3, we illustrate the usage and performance of these
algorithms in the specific case of autoregressive (AR) time
series with missing observations.

2. CYCLIC-MAXIMIZATION (CM) AND
EQUALIZATION-MAXIMIZATION (E � M)

2.1. CM

A conceptually simpler algorithm than EM, which is some-
times termed as cyclic-maximization (CM) or Pseudo-EM
(PEM) (see, e.g., [3] [4]), consists of the following main
steps:

� Given �� � , do for � � � � � � � � � until convergence the
following steps:
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� Obtain ��
�

via

� � �
� � � 	 � 
 � � � 
 ��

� � �
� (3)

� Obtain ��
�

via

� � �� � � 	 � 
 � � ��
� 
 � � (4)

While CM typically converges faster than EM, the pa-
rameter estimates obtained with CM may be significantly
less accurate than the ML estimate; in particular, the CM
estimates may be heavily biased, unless the ratio � � � � �
is rather small (see, e.g., [4], [5] and also the next section).
The reason for the inferior accuracy of CM is not difficult to
understand. By a well-known property of cyclic maximiza-
tion, CM monotonically increases the complete-data likeli-
hood function, � � 	 � 
 � � � 
 � � , at each iteration, and hence it
is a solver of the following problem:

� � �
� 	 � � � 	 � 
 � � � 
 � � � (5)

Because

ln � � 	 � 
 � � � 
 � � � ln � � � � 
 � � � 
 � � � ln � � 
 � 
 � � (6)

the maximization of the function in (5) with respect to � ,
for � fixed, is equivalent to

� � �
� ln � � � � 
 � � � 
 � � � (7)

Let �� 
 � � denote the solution of (7), and let

� 
 � � � ln � � � � � 
 � � � 
 � � 	 � � 
 �� � � 
 � (8)

It follows from the previous discussion that the CM es-
timate of � is given by the solution to the problem:

� � �� ln � � 	 � 
 � � �� 
 � � 
 � � � � � �� � ln� � 
 � � � � � � 
 � � 	 � (9)

As an example, if the conditional pdf � � � � 
 � � � 
 � � is
Gaussian, i.e.,

� � � � 
 � � � 
 � � � �

 � � � � �� � � 
 � � � �� �

� �� � � � � � � 
 � � � � � � � 
 � � � � � � 
 �

(10)
where � 
 � � is the conditional mean and � 
 � � is the condi-
tional covariance of � given � , then we have:

�� 
 � � � � 
 � � (11)

and (to within an additive constant)

� 
 � � � � �
� ln � � 
 � � � � (12)

The presence of the second term in (9) clearly shows
that in general the CM estimate of � is not a maximizer of

� � 
 � 
 � � . It is precisely this term, which typically is inde-
pendent of the available data (see, e.g., (12)), that makes
CM be significantly less accurate than ML (in particular,
the CM estimate may be heavily biased), unless � � � � �
is “small” (in which case the second term in (9) becomes
negligible). Hence, despite the fact that CM is both concep-
tually and computationally much simpler than EM, its us-
age can be recommended only if the ratio � � � � � is fairly
small.

Following the previous discussion on CM, a natural ques-
tion is whether it would be possible to enhance the estima-
tion performance of CM without sacrificing its conceptional
and computational simplicity. It follows from (9) that the
problem (2) can be reformulated as:

� � �� 	 � � ln � � 	 � 
 � � � 
 � � � � 
 � � 	 (13)

For fixed � , the maximization of the above function with
respect to � has exactly the same solution as in the corre-
sponding step of CM. However, for given � , the maximiza-
tion of (13) with respect to � is much more complicated
than the maximization in the last step (4) of CM, owing to
the second term in (13); in particular, the maximization of
(13) with respect to � , for fixed � , usually does not have
a closed-form solution. Consequently, the cyclic maximiza-
tion of (13) with respect to � and � is computationally more
intensive than CM, and thus it is not the modification of
CM we are seeking. A more appealing modification of CM,
which leads to the EqM algorithm, is derived next.

2.2. EqM

The estimate of � used in the CM algorithm, for fixed � �
��

� � �
, is given by �� 
 ��

� � �
� , which is the mode of the condi-

tional pdf � � � � 
 � � � 
 ��
� � �

� (see (7)). This is a very sensible
estimate, and hence it might seem difficult to find a better

choice of � , for given � � ��
� � �

. However, we can see from
(6) that by choosing � as a function � , let us say � � � 
 � � ,
such that

� � � � 
 � � � 
 � � � � 
 � � � 
 � const. � (14)

we get

ln � � 
 � 
 � � � const � � ln � � � 	 � 
 � � � 
 � � 	 � � 
 � � � 
 � (15)

The choice of the function � 
 � � , which is not unique,
will be discussed shortly. Using (15) we can reformulate
the ML estimation problem in (2) as:

� � �� � � 	 � 
 � � � 
 � � 
 � � � (16)

In general, this maximization problem is not easier to
solve than the original ML problem (2); in particular, usu-
ally (16) does not admit a closed-form solution. However,
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we can use the following fairly natural iterative algorithm,
which we call EqM (for reasons explained below), to ap-
proximate the solution of (16):

� Given �� � , do for � � � � � � 	 	 	 until convergence the
following steps:

� Eq-step: Obtain �

�

via

�

�

� � � ��
� � �

� (17)

� M-step: Obtain ��
�

via


 � �� � � � � � � � �

� � � � 	 (18)

Setting 
 � � � � � in (6) equalizes the values of the con-
ditional pdf � � � � � 
 � � � � � corresponding to different values
of � , and thus the name of the corresponding step of the
above algorithm.

As an example, consider again the Gaussian conditional
pdf in (13). Let


 � � � � � � � � � � �
��

ln � �� � 	 � 
 � �� � � � � � � � � � � � � � �

�� �
 � � � � (19)

where � � � � is an � � � � vector (which possibly depends
on � ), and 	 is a constant which satisfies:	 
 � � � � � � 	 (20)

Then, a simple calculation shows that, for (19),

� � � � � 
 � � � � � � � � � 	 � 
 � �
� � � � � � � 
 	 � � 
 � const 	 (21)

To satisfy the condition in (20) on 	 we can somewhat
arbitrarily choose: 	 � � � � �� � � � (22)

(or slightly larger). The accuracy of EqM appears to depend
on 	 in a mild way. However, in general, a smaller value of	 is likely to have a beneficial effect on the performance of
EqM. Consequently, we recommend setting 	 to as small a
value as possible, such as in (22). Of course, choosing 	
in this way we may be at risk of violating the condition in
(20) at some iteration of EqM. However, this is not a serious

problem; if (20) does not hold at � � ��
�
, we can increase	 as necessary (e.g., to 	 � � � � ��

�
� � or slightly larger), and

continue the iterative process with the new value of 	 ; doing
so is acceptable as long as EqM convergeswith a fixed value
of 	 .

Regarding the choice of � � � � in (19), the accuracy of
EqM appears to depend on � � � � in a relatively complicated

manner. In the next section we show empirically that the es-
timation errors associated with EqM can be kept reasonably
small if we set: � � � � � � � � � � � (23)

where � � � � � � denotes the first column of � � � � . The func-
tion � � � � , (19), corresponding to (23) is given by

� � � � � � � � � �

��
ln � �� � 	 � 
 � �

� � � � � �

�� �


� � � � � � (24)

where � � � � � � denotes the � � � � � element of � � � � note, as
a small bonus, that the computation of the inverse matrix

�
� � � � � is not required in (24).
We should note that in the numerical examples of the

next section we have also tested much larger values of 	
than that given by (22), as well as randomly generated � � � �
vectors instead of (23), and have found that the performance
of EqM was almost unchanged.

Next, we remark on the fact that the M-step of EqM is
identical computationally to the last step, (4), of the CM,
whereas the Eq-step of EqM is only slightly more involved
than step (6) of CM. Consequently, the computational bur-
dens per iteration associated with CM and EqM are quite
similar to one another. Regarding the convergence speed,
the empirical experience we have accumulated so far sug-
gests that EqM, like CM, converges in a small number of
iterations. Hence, like CM, EqM is usually faster than EM.

We have shown in [6] that EqM generally does not max-
imize the function in (16). However, the difference between
EqM and ML can be made small by choosing the function

� � � � appropriately. In the next section, we show that for
the scenario considered there the choice of � � � � in (24) is
satisfactory, in the sense that the corresponding accuracy of
EqM is close to the ultimate accuracy associated with EM.

3. NUMERICAL ILLUSTRATIONS AND
CONCLUDING REMARKS

Consider an AR time series, � � � � � � � � � � 
 � � � � , generated by
the equation� � � � � � � � � � � � � � 	 	 	 � � � � � � � � � � � � � � (25)

where � � � � � � � � � � 
 � � � � is a sequence of i.i.d. Gaussian random
variables with mean zero and variance � 
 , and the coeffi-
cients � � � � are such that the polynomial � � � � � � � � �

� 	 	 	 �� � has all its zeros strictly inside the unit circle. We gen-
erate � observations with (25), out of which we randomly
omit � � (the locations of the omitted samples are uniformly
distributed on � � � � � ). The remaining � � � � � � � obser-
vations are to be used for estimating the parameters in (25);
we will focus on the estimation of � � � � in what follows.
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We consider the following second-order AR time series:

� � � � � � � � � � � � �
�

� � � � � � � � � � (26)

and fix � � � � � , but we vary the number of missing obser-
vations, � � , such that � � � � takes on values in the interval

� � � � � � � . To measure the quality of an estimate we use MSE
figures, which we plot versus the ratio � � � � . We estimate
the MSE values by means of 1000 standard Monte-Carlo
simulations, across which we vary both the noise sequence

� � � � 	 � and the positions of the � � missing observations.
We use EM, CM and EqM methods to estimate � � � �

(see [6] for more details). As a comparistion, we also show
the performance of the initial estimation where we set 
 �

� and estimate � � � � via the method of least-squares (LS).
The so-obtained � �� � � are used as initial estimates in all the
other (iterative) algorithms.
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Fig. 1. MSE of � �� � ��
�

� , vs. � � � � .

In Fig. 1 we show the MSE of the estimates � �� � � ��
�

�
obtained with the previous methods, along with the Cramér-
Rao bound (CRB). In Fig. 2 we display the average number
of flops per run for our Matlab implementations of the above
estimation algorithms.

Based on our admittedly limited experience with the
above parameter estimation methods we submit the follow-
ing facts:


 The initial estimation method and CM are fast but, as
� � � � increases, both of them become increasingly
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Fig. 2. Average number of flops per run, vs. � � � � .

biased, which leads to unacceptably large MSE val-
ues.


 EM yields accurate estimates whose MSE follows the
CRB for much larger values of � � � � (up to � � � � �

� � � in the reported example). However, EM is more
intensive computationally than CM.


 EqM is faster than EM, at a comparable estimation
performance. In fact, it appears that EqM offers the
EM’s statistical performance at the CM’s computa-
tional cost.
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