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ABSTRACT

We present several analytical and numerical results demonstrating
the superiority of minimax estimators over least-squares (LS) es-
timation. We show that, for any bounded parameter set, a linear
minimax estimator achieves lower mean-squared error than the LS
estimator, over the entire parameter set. When a parameter set
is unknown, we propose to estimate the parameter set from the
data, and show that in many cases, the obtained blind minimax es-
timator still dominates the LS estimator. The results are related to
and compared with other LS-dominating estimators, such as the
James-Stein estimator.

1. INTRODUCTION

Consider the system of observations y = Hx + w, where x is a
deterministic parameter vector, H is a known transformation ma-
trix, and w is Gaussian random noise with zero mean and known
covariance Cw. An estimator x̂ of x is a function of y designed
to be close to x in some sense, for example, in terms of the mean-
squared error (MSE) between x and x̂. The standard estimation
technique in this case seeks the linear unbiased estimator min-
imizing the MSE; this approach leads to the well-known least-
squares (LS) estimator [1]. However, by allowing the use of bi-
ased and nonlinear estimators, significant reduction in MSE may
be achieved.

The goal of this paper is to develop estimators which dominate
the LS estimator. An estimator is said to dominate the LS estima-
tor if its MSE is never higher than that of the LS estimator, while
being strictly lower for some values of x [2]. Thus, if an estima-
tor dominates the LS estimator, it is always preferable in terms of
MSE performance.

Our design is based on the use of minimax MSE estimators
[3, 4]. These are estimators designed to minimize the worst-case
estimation error, for all parameters x in a specified set U . In Sec-
tion 2, we show that for any bounded parameter set U , the MSE
obtained by the minimax estimator is lower than the MSE of the
LS estimator, for all x in U [5].

We seek to apply this result to the general case, in which no
parameter set U is known. In Section 3, we consider “blind mini-
max” estimators, which are minimax estimators whose parameter
set is itself estimated from measurements. The result is a nonlin-
ear estimator whose performance is superior to the LS estimator
in many cases. We discuss two types of blind minimax estimators,
and show that for many scenarios, both estimators dominate the LS
estimator. This is done by showing that the blind minimax estima-
tor is a modified version of estimators known to dominate the LS

estimator [6–9]. For analytical tractability, the dominance proof is
limited to the case H = I and Cw = I. In Section 4, the im-
proved performance of the blind minimax estimator is illustrated
numerically for more general cases. The results are summarized
and discussed in Section 5.

2. MINIMAX ESTIMATION

Consider the system of measurements y ∈ C
m,

y = Hx + w, (1)

where x ∈ C
n is an unknown deterministic vector, H ∈ C

m×n is
a known full-rank matrix, and w is a zero-mean Gaussian random
vector with known positive definite covariance Cw. We wish to
construct an estimator x̂ of x, such that the mean-squared error
(MSE) is minimal. In this section we limit our discussion to linear
estimators, x̂ = Gy [1]. For such estimators, the MSE is given by

ε(x̂,x) = E
{‖x̂ − x‖2} = v(x̂) + ‖b(x̂)‖2, (2)

where the variance v(x̂) is given by

v(x̂) = E
{‖x̂ − Ex̂‖2} = Tr(GCwG∗), (3)

and the bias b(x̂) equals

b(x̂) = E{x − x̂} = (I − GH)x. (4)

Since b(x̂) depends on the unknown value of x, direct mini-
mization of the MSE is not possible. A common approach is to
limit discussion to unbiased estimators, in which case the MSE no
longer depends on x, and then seek the linear estimator that mini-
mizes the MSE. This results in the least-squares (LS) estimator,

x̂LS = (H∗C−1
w H)−1H∗C−1

w y. (5)

The MSE of the LS estimator is constant for all x, and is given by

ε0 = Tr
(
(H∗C−1

w H)−1) . (6)

While the LS estimator is the best linear unbiased estimator,
in many cases biased estimators exist which outperform the LS es-
timator in terms of MSE. In particular, if the parameter x is known
to lie within a given parameter set U , a linear minimax MSE esti-
mator may be constructed, which minimizes the worst-case MSE
within the parameter set U [3, 4]. Formally, a linear estimator x̂M

is a linear minimax MSE estimator for a parameter set U if, for any
other linear estimator x̂,

sup
x∈U

E
{‖x̂M − x‖2} ≤ sup

x∈U
E

{‖x̂ − x‖2} . (7)
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Fig. 1. Worst-case error for various minimax estimators.

The linear minimax MSE estimator for the spherical parameter set
{x : ‖x‖ ≤ r} is given by [4]

x̂r =
r2

r2 + ε0
(H∗C−1

w H)−1H∗C−1
w y. (8)

As the parameter set radius r increases, the minimax estimator
approaches the LS estimator. Indeed, the LS estimator is the linear
minimax MSE estimator for the parameter set C

n.
The following theorem demonstrates that the minimax estima-

tor for any bounded set U outperforms the LS estimator, in that it
provides lower MSE than the LS estimator for any x in U .

Theorem 1. Let U be a bounded parameter set, and let x̂M be a
linear minimax MSE estimator for the parameter set U . Then, the
MSE of x̂M is lower than the MSE of the LS estimator (5), for all
x ∈ U .

Proof. For any bounded U , there exists a finite r such that U is
bounded within the sphere {x : ‖x‖ ≤ r}. The linear minimax
MSE estimator for this sphere is given by (8). We now show that
x̂r achieves a lower MSE than the LS estimator for all x ∈ U . The
bias of x̂r is given by

b(x̂r) = E{x̂r − x} = (β − 1)x, (9)

where β = r2

r2+ε0
. It follows from (3) that the variance of x̂r is

v(x̂r) = Tr(GCwG∗) = β2ε0. (10)

Using (2), we have that for any x ∈ U ,

MSE(x̂r) = β2ε0 + (1 − β)2‖x‖2

≤ β2ε0 + (1 − β)2r2

=

(
r2

r2 + ε0

)
ε0

< ε0. (11)

Hence, for all x ∈ U , the MSE using x̂r is lower than the MSE for
an unbiased estimator. From (7), it follows that

MSE(x̂M) ≤ MSE(x̂r) < ε0 for all x ∈ U , (12)

which completes the proof.

From Theorem 1, it follows that if the parameter x is known
to lie in some bounded parameter set U , then the minimax esti-
mator is provably better than the LS estimator. This is illustrated
in Figure 1, which plots the worst-case MSE obtained by minimax
estimators using spherical parameter sets with various radii, for the
case H = I and Cw = I; similar results are obtained for other
settings. The worst-case MSE increases with the parameter set ra-
dius, and approaches the MSE ε0 of the LS estimator as r → ∞.

In the following section, we extend the use of minimax esti-
mators to the case in which the parameter set is unknown and must
be estimated from the measurements.

3. BLIND MINIMAX ESTIMATION

3.1. Definitions

Minimax estimators outperform the LS estimator because they are
designed for a subset of all possible parameters; this subset is the
parameter set U . In many cases, however, no parameter set is
known. In these situations, we propose to use a spherical param-
eter set, centered at the origin, whose radius r is itself estimated
from the measurements. Thus we obtain a two-stage process:

1. Estimate the parameter set radius r from the measurements.

2. Estimate the parameter x using a minimax estimator whose
parameter set is U = {x : ‖x‖ ≤ r}.

As we shall see, this blind minimax estimation approach results
in estimators which improve substantially upon the LS estimator,
while using exactly the same input.

The parameter set radius indicates the degree of certainty of
the value of x: as r increases, less knowledge is assumed about
x. Thus we would like to choose r to be as small as possible,
while still including the true value of x; optimally, we would like
to choose r = ‖x‖. Since x is unknown, we can instead use the
LS estimate x̂LS, and select

rd = ‖x̂LS‖. (13)

Substituting rd into the linear minimax MSE estimator (8), we ob-
tain the direct blind minimax estimator (DBME)

x̂d =
‖x̂LS‖2

‖x̂LS‖2 + ε0
x̂LS. (14)

It turns out that r2
d tends to be an overestimate of ‖x‖2 [10].

To see this, consider the expectation of r2
d . Denoting GLS =

(H∗C−1
w H)−1H∗C−1

w , we have

E
{
r2

d

}
= E

{‖GLS(Hx + w)‖2}
= E{Tr ((x + GLSw)(x + GLSw)∗)}
= Tr(xx∗) + E{Tr (GLSww∗G∗

LS)}
= ‖x‖2 + ε0, (15)

where ε0 is the MSE of the LS estimator (6). Thus, in the average
case, r2

d overestimates ‖x‖2 by ε0. To see whether this results in
performance degradation, we define the unbiased estimator

r2
u = ‖x̂LS‖2 − ε0. (16)

Note that r2
u may become negative when x̂LS is small. Substituting

r2
u into the linear minimax MSE estimator (8) yields

x̂u =
‖x̂LS‖2 − ε0

‖x̂LS‖2
x̂LS. (17)
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We refer to this estimator as the unbiased blind minimax estimator
(UBME). Although the estimator itself is biased, it is based on an
unbiased estimate of ‖x‖2.

3.2. Comparison with LS Estimation

We now compare the MSE obtained by the blind minimax estima-
tors with the MSE of the LS estimator. For analytical tractability,
we limit our discussion to the special case in which H = I and
Cw = I. Our goal is to show that the blind minimax estimators
dominate the LS estimator. An estimator x̂1 is said to dominate x̂2

if MSE(x̂1) ≤ MSE(x̂2) for all x, with strict inequality for some
value of x [2]. The following theorems show that this is indeed the
case.

Theorem 2. Let H = I and Cw = I, and assume that n ≥ 4.
Then, the DBME (14) dominates the LS estimator (5).

The proof of Theorem 2 is based on the following general re-
sult, which is due to Strawderman [8].

Lemma 1. Let H = I and Cw = I, and assume that n ≥ 3.
Let ρ(λ) be a non-decreasing function satisfying 0 ≤ ρ(λ) ≤ 2.
Then, the estimator

x̂ =

(
1 − ρ

(
1
2
‖y‖2) n − 2

‖y‖2

)
y (18)

dominates the LS estimator (5).

Proof of Theorem 2. Since H = I and Cw = I, we have x̂LS =
y and ε0 = n. Substituting these values into (14) yields

x̂d =

( ‖y‖2

‖y‖2 + n

)
y. (19)

This is a modified version [11] of an estimator first proposed by
Alam and Thompson [7],

x̂AT =

( ‖y‖2

‖y‖2 + c

)
y, 0 ≤ c ≤ n − 2. (20)

The Alam-Thompson estimator (20) is known to dominate the LS
estimator [9]. We now use Lemma 1 to show that the modified esti-
mator (19) also dominates the LS estimator. Consider the function

ρ(λ) =

(
n

n − 2

) (
2λ

2λ + n

)
. (21)

The function ρ(λ) is nondecreasing in λ, and for n ≥ 4, we have
0 ≤ ρ(λ) ≤ 2. Therefore, by Lemma 1, the estimator (18) domi-
nates the LS estimator x̂LS = y. Substituting (21) for ρ(·) yields
the required estimator (19).

Theorem 3. Let H = I and Cw = I. For n > 4, the UBME (17)
achieves lower MSE than the LS estimator, for all x. For n = 4,
the UBME achieves the same MSE as the LS estimator, for all x.

Proof. Substituting x̂LS = y and ε0 = n into (17), we obtain

x̂u =

(
1 − n

‖y‖2

)
y. (22)
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Fig. 2. MSE of blind minimax estimators (as a fraction of ε0, the
MSE of the LS estimator) for varying SNR levels.

This estimator was first proposed by Stein [12], and was further
analyzed by James and Stein [6], who showed that its MSE is given
by

MSE(x̂u) = n + n(4 − n)E

{
1

n − 2 + 2K

}
, (23)

where K is a Poisson random variable with mean 1
2
‖x‖2. The

expectation E{1/(n − 2 + 2K)} contains only positive terms and
is therefore always positive. For n > 4, the expression n (4 − n)
is negative, so that MSE(x̂u) < n. For n = 4, we have n(4−n) =
0, so MSE(x̂u) = n, completing the proof.

As we have seen in Theorems 2 and 3, the proposed blind
minimax estimators outperform the LS estimator for all values of
the parameter x, in the analytically simple case H = I, Cw = I.
A numerical simulation of the general case follows in Section 4.

4. NUMERICAL RESULTS

We have seen in Section 3 that blind minimax estimators dominate
the LS estimator for the special case H = I, Cw = I. In this sec-
tion we provide numerical evidence demonstrating that this occurs
for many cases of correlated measurements as well.

To test estimation performance, a setup with m = n = 5
was used. The parameter x was chosen as an independent, iden-
tically distributed Gaussian random variable with zero mean and
unit variance. Correlation between measurements can equivalently
arise either from H �= I or from Cw �= I. We arbitrarily chose
H = I and

Cw =

⎛
⎜⎜⎜⎝

b αb · · · αb
αb b · · · αb
...

...
. . .

...
αb αb · · · b

⎞
⎟⎟⎟⎠ , (24)

where α controls the noise correlation, and b controls the signal-
to-noise ratio (SNR), defined as

SNR =
E

{‖x‖2
}

Tr(Cw)
=

1

b
. (25)
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Fig. 3. Estimator performance for varying noise correlation levels.

The simulation was performed at a variety of SNR levels, with
correlation α = 1

3
. The results clearly show dominance of both

blind minimax estimators over the LS estimator, for moderate cor-
relation levels (see Figure 2). Both estimators converge to the LS
estimator for high SNR.

Next, the effect of measurement correlation on estimator per-
formance was examined. To this end, the simulation was repeated
with various correlation values α, at a constant SNR of 0 dB (see
Figure 3). These results indicate that the DBME outperforms the
LS estimator for all correlation levels tested, while the UBME fails
for high noise correlation levels.

5. SUMMARY AND DISCUSSION

The purpose of this paper is to illustrate the power of minimax
estimators, and to analytically show that these estimators are su-
perior to the commonly-used LS estimator. We began by showing
that, for any bounded parameter set U , linear minimax estimators
achieve lower MSE than the LS estimator, for any x in U . Being
linear, these estimators require no more computational resources
than the LS estimator. Thus, when a parameter set is known, min-
imax estimators should definitely be preferred over LS estimators.

Even when a parameter set is unknown, blind minimax esti-
mators can still be utilized by first estimating a parameter set ra-
dius, then using a minimax estimator for the estimated parameter
set. Because of the two-stage estimation process, the obtained esti-
mators are nonlinear, but like the LS estimator, these estimators re-
quire only O(nm) multiplications per estimation. We propose two
methods for estimating the parameter set radius: directly estimat-
ing the radius with the LS estimator (DBME), or using an unbiased
estimator for the radius (UBME). These estimators were compared
with the LS estimator, both analytically and numerically. The an-
alytical comparison was limited to the case H = I, Cw = I, and
showed that when the number of variables n is greater than 4, both
estimators dominate the LS estimator. Numerical comparison in-
dicates that blind minimax estimators continue to dominate the LS
estimator for other cases as well. The conditions required for dom-
inance of the LS estimator in the general case are currently one of

our research topics.
The parameter set radius, as estimated by the DBME, was

shown to be an overestimate of the true value ‖x‖. This led to the
development of the UBME, for which the radius estimate is unbi-
ased. It is therefore somewhat surprising that the DBME outper-
forms the UBME in most cases (Figures 2 and 3). A possible ex-
planation for this result is that prudence takes preference over ac-
curacy: a conservative radius estimate yields a parameter set which
almost always contains the parameter, while a tight parameter set
does not. This result is all the more surprising considering that
the UBME is related to the well-known James-Stein estimator [6],
while the DBME is related to the seldom-used Alam-Thompson
estimator [7]. The DBME does not dominate the UBME, as
there are some extreme cases in which the UBME outperforms the
DBME. However, our results indicate that the DBME may outper-
form the UBME in practical situations. Analytical comparison of
these estimators is another topic for further research.
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