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ABSTRACT

We consider the problem of multichannel estimation, in which we
seek to estimate multiple input vectors that are observed through a
set of linear transformations and corrupted by additive noise. The
input vectors xk are known to satisfy a weighted norm constraint.
We discuss both the case where the linear transformations are fixed
(certain) and the case where they are only known to reside in some
deterministic uncertainty set. We seek the linear estimator that
minimizes the worst-case mean-squared error (MSE) across all
possible values of the linear transformations and possible values
of xk. We show that for an arbitrary choice of weighting matrix,
the minimax MSE estimator can be formulated as a solution to a
semidefinite programming problem (SDP). In the case in which the
linear transformations are fixed and the norms are unweighed, the
minimax MSE multichannel estimator has an explicit closed from
solution. Finally, we demonstrate through examples, that the min-
imax MSE estimator can significantly increase the performance
over conventional least-squares based methods.

1. INTRODUCTION

Estimation of multiple signals from multiple outputs is an im-
portant problem that appears in a variety of applications, such as
blind multichannel estimation [1], speech separation [2] and im-
age restoration [3]. In a multichannel estimation problem, we seek
to estimate multiple input vectors {xk, 0 ≤ k ≤ N − 1}, that
are observed through a set of linear transformations Hi,k and cor-
rupted by additive noise. Thus, the ith output vector yi is given by
the superposition yi =

�N−1
k=0 Hi,kxk + wi, where Hi,k is the

transfer function from the kth input xk to the ith output yi and wi

is the ith noise vector.
If the second order statistics of the input vectors and the noise

vectors are known, then we can design an estimator to minimize
the mean-squared error (MSE). The resulting estimator is the well-
known Wiener estimator. However, if the prior statistics of the
input vectors are unknown, or if the linear transformations are not
known exactly, then the Wiener estimator cannot be implemented.

A straightforward approach to deterministic multichannel es-
timation in the case of known linear transformations is the least-
squares (LS) approach, in which the estimator is designed to min-
imize the norm of the data error, which is the sum of the norms
of the differences between each of the observation vectors yk and
the corresponding estimated observation vector ŷk. However, in
an estimation context, the objective typically is to minimize the
size of the norms of the estimation errors x̂k − xk, where x̂k is
an estimate of xk, rather than that of the data error. To develop
an estimation method that is based directly on the estimation error,

we may seek the estimator that minimizes the MSE, which is equal
to the sum of the variance and the squared norm of the bias. How-
ever, since the bias generally depends on the unknown parameters
xk, we cannot choose an estimator to directly minimize the MSE.

In this paper we consider the case in which the weighted norm
of the unknown vectors xk is bounded, i.e., ‖xk‖T = x∗

kTxk ≤
L2 for some constant L and positive definite weighting matrix T
and we assume that Hi,k are not known exactly but rather given by
Hi,k +∆i,k where Hi,k is known and ∆i,k is an unknown pertur-
bation matrix satisfying a norm bound constraint ‖∆i,k‖ ≤ ρi,k.
We then develop a minimax MSE estimator that minimizes the
worst case MSE across all possible bounded values of the input
vectors xk and the transfer matrices Hi,k. The multichannel mini-
max MSE estimator is an extension of the recently proposed linear
minimax MSE estimator for the single channel case [4].

When deriving the minimax MSE estimator we assume that
the norm bounds L and ρi,k are known. However, our algorithms
can also be implemented when L and ρi,k are not known, by first
estimating them from the data. Thus, in practice, no prior infor-
mation is needed for implementing the proposed estimators. Our
experimental results suggest that with these estimated L and ρi,k,
the minimax MSE estimator can significantly increase the perfor-
mance over conventional methods.

In our development, the multichannel transfer matrix H with
block matrices Hi,k is assumed to be a block circulant matrix,
so that Hi,k is equal to H(k−i)modN where N is the number of
channels. The block circulant model has also been used in the
context of image restoration [5], and in the context of cyclic con-
volution filter banks [6]. Moreover, in many practical scenarios it
is reasonable to assume that H is a block Toeplitz matrix so that
Hi,k = Hi−k. Using the well know convergence properties of
Toeplitz matrices [7, 8], we can approximate the block-Toeplitz
matrix H by a block circulant matrix. In Section 3 we show that
if H and the covariance matrix C of the noise vectors are block
circulant, then with x̂ = Gy, where x̂ is the concatenation of the
estimated inputs x̂k, G can also be chosen as a block circulant ma-
trix. The blocks of G are a solution to a semidefinite programming
problem (SDP), which is a tractable convex optimization problem
that can be solved efficiently [9]. We then develop, in Section 4,
a closed form solution to the minimax MSE estimation problem
for the case where the weighting matrix T is equal to I and H is
known. Finally, we demonstrate through examples, in Section 5,
that both in the case of certain H and in the case of unknown H,
the minimax MSE estimator can significantly increase the perfor-
mance over the multichannel LS, nonlinear regularized LS and the
Structured Total LS approaches.

Proofs of theorems, which are omitted here for brevity, and a
detailed discussion on block circulant matrices and Discrete Fourier
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Transforms can be found in [10].

2. PROBLEM FORMULATION AND NOTATION

We denote vectors by boldface lowercase letters and matrices by
boldface uppercase letters. The identity matrix is denoted by I,
(·)∗ and (·)T denote the Hermitian conjugate and the transpose of
the corresponding matrices respectively. For two Hermitian ma-
trices A,B the notation A � B means that A − B is a positive
semidefinite matrix. The boldface letter i denotes

√−1. For an
Hermitian matrix A, λmax(A) denotes the largest eigenvalue of
A. We denote by ‖v‖ the Euclidean norm of the vector v and by
‖A‖ =

�
Tr(AT A) the Frobenius norm of the matrix A.

A matrix A is block circulant (BC) if

A =

�����
A0 A1 · · · AN−1

AN−1 A0 · · · AN−2

...
...

A1 A2 · · · A0

����� . (1)

The set of all BC matrices is denoted by B. Two interesting special
cases of BC matrices are the elementary BC matrix in which A1 =
A2 = . . .AN−1, and the block diagonal matrix in which A1 =
A2 = . . .AN−1 = 0. The Discrete Fourier Transform (DFT)
of a BC matrix given by (1) is a BC matrix with block matrices�A0, . . . , �AN−1 where

�Aj
�
=

N−1�
k=0

ωkjAk, 0 ≤ j ≤ N − 1, (2)

and ω = e−
2πi
N .

Consider the problem of estimating N unknown deterministic
parameter vectors xk ∈ �

m, 0 ≤ k ≤ N − 1 from N vector
observations yk ∈ �n, 0 ≤ k ≤ N − 1, where

y = (H + ∆)x + w. (3)

Here y = (yT
0 , . . . ,yT

N−1)
T , x = (xT

0 , . . . ,xT
N−1)

T , H is a
known nN ×mN matrix, ∆ is an unknown nN ×mN perturba-
tion matrix and w = (wT

0 , . . . ,wT
N−1)

T is a zero-mean random
vector with covariance C. We assume that H,C and ∆ are BC
matrices. An interesting special case of (3) is the multiple ob-
servation problem, in which H and ∆ are both block diagonal.
The problem then reduces to that of estimating N input vectors xk

from N observations yk, given by

yk = (H0 + ∆0)xk + wk, 0 ≤ k ≤ N − 1. (4)

Another interesting case is when H and ∆ are elementary BC ma-
trices. In this case the observations are given by

yk = (H0+∆0)xk +
�
i �=k

(H1+∆1)xi +wk, 0 ≤ k ≤ N−1,

(5)
which implies that the within channel transfer function, i.e., the
transfer function between each input vector and the corresponding
output vector, is identical (Hi,i = H0), and the cross channels are
also equal (Hi,j = H1, i �= j).

The set of all possible values of ∆ is

U∆
�
={∆ ∈ B : ‖∆k‖ ≤ ρk, 0 ≤ k ≤ N − 1} (6)

and the set of all possible values of x is

Ux
�
={x = (xT

0 , . . . ,xT
N−1)

T : ‖xk‖T ≤ L, 0 ≤ k ≤ N − 1}.
(7)

We estimate x using a linear estimator so that x̂ = Gy for some
mN × nN matrix G. The MSE of the estimator is

E(‖x̂ − x‖2) = (8)

Tr(GCG∗) + x∗(I − G(H + ∆))∗(I − G(H + ∆))x.

Since the MSE depends on the unknown perturbation matrix ∆ and
on the unknown parameters x, in general we cannot construct an
estimator to directly minimize the MSE. Instead, we seek the linear
estimator that minimizes the worst-case MSE across all possible
values of x and ∆ satisfying x ∈ Ux and ∆ ∈ U∆. Thus, we
consider the problem

min
x̂=Gy

max
x∈Ux,∆∈U∆

E(‖x̂ − x‖2) (9)

where E(‖x̂ − x‖2) is given in (8). Problem (9) is reminiscent
of the estimation problem considered in [4]. However, whereas in
the problem considered in [4] the entire vector x was norm con-
strained, in (9) the norm constraint is on sub-vectors of x, which
complicates the problem considerably. Furthermore, while in [4]
the entire perturbation matrix ∆ was norm constrained, in (9) we
assume that ∆ is a BC matrix and each of the individual blocks of
∆ is norm constrained.

3. MINIMAX MSE ESTIMATOR

We now show that the estimation problem (9) can be formulated as
an SDP, where an SDP is the problem of minimizing a linear ob-
jective subject to linear matrix inequality (LMI) constraints, which
are matrix constraints of the form A(x) � 0, where the matrix A
depends linearly on x [9]. The advantage in this formulation is that
it readily lends itself to efficient polynomial time methods [9]. In
Theorem 1 below we present the SDP formulation. A byproduct
of this theorem is that the minimax MSE estimator matrix G can
be chosen as a BC matrix. In this case the relation x̂ = Gy can
be written as

x̂k =

N−1�
i=0

Gi+kyi, 0 ≤ k ≤ N − 1, (10)

where the indices are calculated modulo N. Note, that (10) implies
the intuitive result that the vector yl has the same effect on the
estimator of xl+j as yk on the estimator of xk+j , for every l, k, j.

Theorem 1 Let x =
	
xT

0 ,xT
1 , . . . ,xT

N−1


T
denote the vector of

unknown parameters in the model y = (H + ∆)x + w, where H
is a BC matrix, ∆ is an unknown matrix satisfying ∆ ∈ U∆ and w
is zero-mean random vector with a BC covariance matrix C. Then
there exists a solution to minx̂=Gy max

x∈Ux,∆∈U∆
E(‖x̂−x‖2)

given by a BC matrix G where

Gj =
1

N

N−1�
k=0

ω−kjAk, 0 ≤ j ≤ N − 1.

Here ω = e−
2πi
N , and A0, . . . ,AN−1 are the solutions to the SDP

min
τ,λj ,tj ,Aj

�
NL2τ +

N−1�
j=0

tj

�
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subject to �
tj a∗

j

aj I

�
� 0, 0 ≤ j ≤ N − 1 ,�

� τI − λjT
−1 T−1/2(I − Aj

�Hj)
∗ 0

(I − Aj
�Hj)T

−1/2 I −ρAj

0 −ρA∗
j λjI

�
� � 0,

where aj = vec(Aj
�C1/2

j ), ρ =
�N−1

j=0 ρj and

�Hj =

N−1�
k=0

ωkjHk, �Cj =

N−1�
k=0

ωkjCk, 0 ≤ j ≤ N − 1.

4. MINIMAX MSE ESTIMATOR FOR T = I AND
KNOWN H

We now consider a special case of the minimax MSE problem in
which T = I and H is known exactly. The following lemma is a
key result which enables us to simplify (9) in this case.

Lemma 4.1 Let A be a BC matrix and let L > 0. Then,

max
‖x0‖≤L,...,‖xN−1‖≤L

x∗Ax = NL2 max
0≤j≤N−1

	
λmax(�Aj)



.

Furthermore, max‖xj‖≤L x∗Ax = max‖x‖2≤NL2 x∗Ax.

Using Lemma 4.1 we can replace the set of constraints ‖x0‖ ≤
L, . . . , ‖xN−1‖ ≤ L with the single constraint ‖x‖2 ≤ NL2.
Thus, in the case of known H (but not in the case of unknown
H), we return to the problem of a single system y = Hx + w
with ‖x‖2 ≤ NL2. This problem was discussed in [4] where it
was shown that the minimax MSE estimator for the case T = I is
given by

x̂ = α(H∗C−1H)−1H∗C−1y, (11)

with α = NL2

NL2+B
and B = Tr

�
(H∗C−1H)−1

�
. The estima-

tor of (11) is a shrunken estimator proposed by Mayer and Willke
[11], which is simply a scaled version of the LS estimator with an
optimal choice of shrinkage factor.

The dominant computation in (11) is the inversion of the mN×
mN matrix H∗C−1H, which requires O(m3N3) operations. This
number is prohibitively large even for medium size problems. On
the other hand, the calculation stemming from Theorem 2 below,
which exploits the block circulant structure, requires the inversion
of N DFT components, each an m × m matrix resulting in a total
of only O(m3N) operations. For example, if N = 100 then our
computation is 10000 cheaper than the direct computation.

Theorem 2 Let x =
�
xT

0 ,xT
1 , . . . ,xT

N−1

�T
denote the vector of

unknown parameters in the model y = Hx + w, where H is
a known BC matrix and w is a zero-mean random vector with
a BC covariance matrix C. Suppose that T = I. For every
0 ≤ j ≤ N − 1, let �H∗

j
�C−1

j
�Hj = VjΣjV

∗
j where Σj is a

diagonal matrix with diagonal elements σj,1, σj,2, . . . , σj,m > 0
and Vj is a unitary matrix. Then the solution to the problem
minx̂=Gy max

x∈Ux
E
�‖x̂ − x‖2

�
is given by

x̂k =

N−1�
j=0

Gj+kyj (12)

where

Gj =
1

N

N−1�
k=0

ω−kjAk, 0 ≤ j ≤ N − 1,

and

Aj =
NL2

NL2 + B

�H∗
j
�C−1

j
�Hj

�−1 �H∗
j
�C−1

j , 0 ≤ j ≤ N − 1.

Here B =
�N−1

j=0

�m
i=1

1
σj,i

=
�N−1

j=0 Tr

( �H∗

j
�C−1

j
�Hj)

−1
�

and

�Hj =

N−1�
k=0

ωkjHk, �Cj =

N−1�
k=0

ωkjCk, 0 ≤ j ≤ N − 1.

5. EXAMPLES

In this section we present two examples of the minimax MSE es-
timator. In the first example, H is known, while in the second
example, H is subject to uncertainty.

5.1. Known H

The first example illustrates the minimax MSE estimator of Theo-
rem 2 for known H and T = I. We consider the two channel case
(N = 2) in which

y0 = H0x0 + H1x1 + w0;

y1 = H1x0 + H0x1 + w1,

where H0 and H1 represent convolution with LTI filters with im-
pulse responses h0 and h1 respectively, with h0 = (1 0.4 0.2 0.1)T

and h1 = (1 0.4 0.1)T . The noise covariance matrix is given by
C = σ2I for some σ2. To evaluate the performance of the mini-
max MSE estimator, we generate a random vector x with subvec-
tors x0 and x1 such that ‖x0‖ = ‖x1‖ = 3.

We consider three estimation methods: Least Squares (LS),
Minimax MSE and Regularized LS (RLS), which is given by

x̂ = argmin
‖x0‖≤L,‖x1‖≤L

‖C−1/2(y − Hx)‖2. (13)

Thus, the RLS is a modified version of the LS method which con-
siders the norm constraints on xi. Both in the Minimax MSE esti-
mator and in the RLS estimator, L is approximated as the norm of
the LS estimator. The RLS estimator does not have an explicit ex-
pression. In order to calculate it we have implemented a gradient
projection algorithm (see e.g., [12]), defined by:
Initial step: Take an arbitrary x0.
General step: For every k = 0, 1, 2, . . . define:

zk+1 = xk − tk


H∗C−1Hxk − H∗C−1y

�
, (14)

for i = 0, 1, xk+1
i =

���
��

zk+1
i , if ‖zk+1

i ‖ ≤ L ,

zk+1
i

‖zk+1
i ‖L , else.

(15)

In Fig. 1 we plot the MSE averaged over 400 noise realiza-
tions as a function of the SNR defined by 10 log

�‖x0‖2/σ2
�
, us-

ing each of the methods above (for the LS we have an analytic
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Fig. 1. MSE as a function of SNR for the LS, RLS and minimax
MSE estimators for unknown L.

expression for the MSE, so the 400 realizations of the noise are
relevant only for the RLS and the minimax MSE estimators). It is
clear that the minimax MSE estimator is the best of the three esti-
mators for SNR>-9 dB, the LS is the worst of the three and RLS is
somewhere in between these two estimators. Note, that the RLS is
iterative, and therefore computationally more demanding then the
minimax MSE estimator.

5.2. Unknown H

To demonstrate the multichannel minimax MSE estimator of The-
orem 1 for uncertain transfer functions, we use the same H0, H1

as in the previous example. We consider the two channel case
(N = 2) in which

y0 = (H0 + ∆0)x0 + (H1 + ∆1)x1 + w0 ;

y1 = (H1 + ∆1)x0 + (H0 + ∆0)x1 + w1 . (16)

The noise covariance matrix is given by C = σ2I for some σ2.
To evaluate the performance of the minimax MSE estimator, we
generate a random vector x with subvectors x0 and x1 such that
‖x0‖ = ‖x1‖ = 3 and random perturbation matrices ∆0 and
∆1 with norm 0.02. We consider two estimation methods: Struc-
tured Total Least Squares (STLS) (see [13]), which is a modified
Total LS method where we seek a pair ( �H,y) that minimizes the
error ‖ �H − H‖2 + ‖ŷ − y‖2 subject to the consistency equa-
tion ŷ ∈ Im( �H) and the constraint that H is a BC matrix, and
the Minimax MSE estimator with L, ρ0 and ρ1 estimated from the
STLS estimator.

In Fig. 2 we plot the MSE averaged over 400 noise realizations
as a function of the SNR using each of the methods above. It is
clear that the minimax estimator outperforms the STLS estimator
even though the norm bounds are unknown. Moreover, the STLS
exhibits an unstable behavior in the sense that the estimation error
has a huge variance. For example, for the same value of σ, we got
that the square of the estimation error was 141 in one realization
of the noise and approximately 106 in another realization.
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