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ABSTRACT

Previous results based on balanced realization the-
ory and concerning the local convergence speed of adap-
tive IIR filters apply to the sufficient order case. In
the undermodelled case, situations of greater practi-
cal interest are those in which the order chosen for the
adaptive filter provides a good approximation of the
system being modelled. A relevant question is then if
the existence of a good approximation of the system
implies a good approximation of the sufficient order
convergence speed properties. We address this prob-
lem here, based on the same balanced realization the-
ory framework. Our results suggest a positive answer
to the question.

1. INTRODUCTION

Several aspects of adaptive IIR filters have been tackled
over the years, leading to different adaptive algorithms
and realization structures. We can mention, for in-
stance, problems related to local minima, stability and
the effect of poles close to the unit circle. Many refer-
ences can be found in [1]−[3]. In [4, 5], we presented an
analysis of the local convergence speed of adaptive IIR
filters, based on balanced realization theory. From it,
followed a new adaptive IIR algorithm. These results
applied mostly to the sufficient order case.

In practice, however, the undermodelled case is more
common. Not because the order of the adaptive filter
is wronlgy chosen, but because the underlying physical
system being modelled has a very high order, possi-
bly infinite (meaning its transfer function is not ratio-
nal). It is also true, though, that situations of greater
practical interest are those in which the order chosen
for the adaptive filter provides a good approximation
of the system being modelled. A relevant question in
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these cases, then, is whether convergence speed prop-
erties derived for sufficient order can be applied with
any confidence. In other words, does the existence of a
good approximation of the system (according to a suit-
able criterion) imply a good approximation of the suffi-
cient order convergence speed properties ? We address
this problem here, based on the framework presented
in [4, 5].

2. INITIAL ASSUMPTIONS

We consider an adaptive IIR filtering identification prob-
lem: a rational function Ĥ(z) is adapted so as to mini-
mize the mean square error between the output ŷ(n) =

Ĥ(z)u(n) produced for a known white input u(n) and
the noisy output of a system H(z) to the same input,
y(n) = H(z)u(n) + η(n). In this mixed notation, z is
the unit-delay operator, with zu(n) = u(n−1). Assum-
ing additive noise η(n) is independent of u(n) makes the
problem equivalent to the minimization of the L2 norm
||H(z)− Ĥ(z)||. We consider that in Ĥ(z) we can vary
M zeros, M poles and a gain. We say, therefore, that
Ĥ(z) is “of order M” .

The system being identified H(z) is assumed to
have order N ≥ M and to have the form

H(z) = Hm(z) + δHd(z), (1)

where Hm(z) has order M . Undermodelling is due to
the discrepancy δHd(z), for which we assume

||[Hd(z)]+||∞ = 1,

with ||[Hd(z)]+||∞ = supω |
∑∞

n=1 hd(n)e−jωn|. These

assumptions imply that min bH(z) ||H(z) − Ĥ(z)|| is up-

per bounded, as we now verify.
A norm inequality true for any F (z) is

||[F (z)]+|| ≤ ||ΓF || ≤ ||[F (z)]+||∞, (2)
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where ||ΓF || is the Hankel norm of F (z). With F (z) =
H(z) − Hm(z), it follows that

||[F (z)]+|| ≤ ||[F (z)]+||∞ = δ||[Hd(z)]+||∞ = δ.

Now, the minimization of ||H(z) − Ĥ(z)|| always

leads to ĥ(0) = h(0) [3]. Making then ĥ(0) = h(0)

and ĥ(n) = hm(n), n > 0, we obtain ||H(z)− Ĥ(z)|| ≤

||H(z)−Ĥ(z)||∞ = δ. Therefore, under the adopted as-

sumptions, min bH(z) ||H(z)−Ĥ(z)|| ≤ min bH(z) ||H(z)−

Ĥ(z)||∞ ≤ δ.
Properties of the convergence speed of IIR adaptive

filters were obtained in [4, 5], mostly for the case of
sufficient modelling (N = M). In the setting described
above, this is achieved with δ = 0, leading to H(z) =
Hm(z). Our aim here is to analyze how these properties
extend to the undemodelled case for small values of δ.

3. REVIEW OF CONVERGENCE SPEED

PROPERTIES

We review here the convergence speed properties of
adaptive IIR filters obtained in [4, 5]. A new parame-
terization of the adaptive filter’s poles was introduced:
αk

.
= 〈ζk(z), V (z)〉, k = 1, 2, . . . , N where 〈., .〉 denotes

the standard inner product, ζk(z) is the normalized
transfer function between the input u(n) and the k−th
state variable xk(n + 1) in a balanced realization of
H(z) and V (z) is the M -order all-pass function with

the same poles as the adaptive filter Ĥ(z). The adap-
tation process of a chosen set of pole parameters wj ,
j = 1, 2, . . . , M (for instance, direct form parameters or
lattice parameters) can be locally described in terms of
these new parameters as

α(n + 1) ≈
[
I− µJJtΣ2

]
α(n),

where α(n) = [α1 . . . αN ]t, Σ is the diagonal matrix
of Hankel singular values of H(z) and the elements of
sensitivity matrix J are [J]kj = ∂αk/∂wj. We note that
J depends on α(n), which is not explicitely indicated
for greater simplicity of the notation.

Local convergence speed depends on the eigenvalue
spread χ(JJΣ2) of the M non-null eigenvalues of the
N × N matrix JJΣ2. In summary its properties are:

1) When H(z) is far from being all-pass (χ(Σ) �
1), convergence tends to be slow, irrespective of param-
eterization.

2.1) When H(z) is close to all-pass (χ(Σ) ≈ 1) and

Ĥ(z) ≈ H(z) (sufficient order assumed), convergence
for direct form parameters is fast if the poles of H(z)
are uniformly distributed and slow if they are concen-
trated.

2.2) Under the same conditions, convergence of lat-
tice parameters is fast and less dependent on the pole
distribution.

4. UNDERMODELLED CASE

On the assumptions made in Section 2 and based on
the convergence speed properties discussed in Section
3, our aim is to analyze how the eigenvalue spread
χ(JJtΣ2) for the undermodelled case (δ > 0 in (1)) re-
lates to the eigenvalue spread χ(JmJt

mΣ2
m) for the asso-

ciated sufficient order case (δ = 0). We will in fact ana-
lyze the eigenvalues of the M×M matrix JtΣ2J, which
are the same as the non-null eigenvalues of χ(JJtΣ2).
We note that for any X and Y such that XY is square,
for the non-null eigenvalues we have λ(XY) = λ(YX).
This matrix property is repeatedly used in the follow-
ing.

4.1. Discrepancy of controllability functions

As seen in Section 3, let ζk(z) =
∑

n ζknzn, k = 1, . . . , N
be the normalized controllability functions of a bal-
anced realization of H(z). Let now ζm,k(z) be the ones
related to Hm(z), with k = 1, 2, . . . , M . We define
then the discrepancy functions ∆k(z)

.
= ζk(z)−ζm,k(z),

k = 1, 2, . . . , M .
The norms ||∆k(z)|| and ||[H(z)−Hm(z)]+||∞ can

be related, as described in the following. Defining the
normalized infinite horizon controllability matrix CM

.
=

[ζ1 ζ2 . . . ζM ]t, where ζk

.
= [ζk0 ζk1 . . .]t, and like-

wise Cm
.
= [ζm,1 ζm,2 . . . ζm,M ]t, we can write

M∑
k=1

σ2
m,k||∆k(z)||2 =

M∑
k=1

σ2
m,k||ζk(z) − ζm,k(z)||2

= trace [Σm(CM − Cm)(CM − Cm)tΣm]

≤ Mλmax[(CM − Cm)(CM − Cm)tΣ2
m], (3)

where Σm = diag[σm,1 σm,2 . . . σm,M ] contains the
Hankel singular values of Hm(z) and λmax[.] denotes
the maximum eigenvalue of the argument.

Now, the Hankel form of H(z) is given by ΓH =
OΣC [3, p. 150], where C

.
= [ζ1 ζ2 . . . ζN ]t and O

is an infinite horizon observability matrix. Likewise,
ΓHm

= OmΣmCm. At this point we make a necessary
approximation, which is good for small values of δ:

ΓH ≈ OmΣmCM .

From this, ΓH−Hm
≈ OmΣm(CM −Cm). We have then

||ΓH−Hm
||2 = λmax(ΓH−Hm

Γt
H−Hm

)

≈ λmax(OmΣm[CM − Cm][CM − Cm]tΣmOt
m)
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= λmax([CM − Cm][CM − Cm]tΣ2
m), (4)

where we used Ot
mOm = I. Combining (2), (3) and (4)

we arrive at
M∑

k=1

σ2
m,k||∆k(z)||2 � M ||ΓH−Hm

||2

≤ M ||[H(z) − Hm(z)]+||
2
∞, (5)

where � indicates an approximate upper bound.

4.2. Sensitivity matrix partition

We make the partition Jt = [Jt
M Jt

R], where JM is M ×
M and JR is R × M , R = N − M . We have, then
JtΣ2J = Jt

MΣ2
MJM + Jt

RΣ2
RJR. For JM we also have

[JM ]k,j = 〈
∂

∂wj

V (z), ζk(z)〉 = [Jm]k,j + [J∆]k,j (6)

where [Jm]k,j
.
= 〈 ∂

∂wj
V (z), ζm,k(z)〉 and

[J∆]k,j
.
= 〈 ∂

∂wj
V (z), ∆k(z)〉.

For greater notational simplicity, we define Km
.
=

ΣMJm and K∆
.
= ΣMJ∆. An approximation for the

upper bound of the norm of K∆ is obtained as follows.
For a unit-norm x we have

xtK∆Kt
∆x =

M∑
j=1

〈
∂

∂wj

V (z),

M∑
k=1

xkσk∆k(z)〉2

≤

M∑
j=1

||
∂

∂wj

V (z)||2 ||

M∑
k=1

xkσk∆k(z)||2

≤

M∑
j=1

||
∂

∂wj

V (z)||2
M∑

k=1

σ2
k||∆k(z)||2,

where we used

||

M∑
k=1

xk∆k(z)||2 = ||

M∑
k=1

xk

∑
l

∆k,lz
l||2 =

= ||
∑

l

(

M∑
k=1

xk∆k,l)z
l||2 =

∑
l

(

M∑
k=1

xk∆k,l)
2 ≤

≤
∑

l

(
M∑

k=1

x2
k)(

M∑
k=1

∆k,l)
2 =

∑
l

M∑
k=1

∆2
k,l =

=

M∑
k=1

∑
l

∆2
k,l =

M∑
k=1

||∆k(z)||2.

Now, since λmax(K∆Kt
∆) = max||x||=1(x

tK∆Kt
∆x),

with (5) and assuming σk ≈ σm,k, k = 1, . . . , M , we ar-
rive at

λmax(K∆Kt
∆) � M

M∑
j=1

||
∂V (z)

∂wj

||2 ||[H(z)−Hm(z)]+||
2
∞.

(7)

4.3. Eigenvalue bounds

From the partition of the sensitivity matrix follows

λmax(J
tΣ2J) ≤ λmax(J

t
MΣ2

MJM )+

+λmax(J
t
RΣ2

RJR). (8)

The second term of this sum is

λmax(J
t
RΣ2

RJR) = λmax(JRJt
RΣ2

R)

≤ λmax(JRJt
R)σ2

M+1.

AAK theory gives σ2
M+1 ≤ ||ΓH−Hm

||2. With (2), then,

λmax(J
t
RΣ2

RJR) ≤ λmax(JRJt
R)×

||[H(z) − Hm(z)]+||
2
∞. (9)

In [5] it is shown that λ(JJt) depends only on the poles
of H(z). The same can be shown for an upper bound
for λ(JRJt

R), bound which is therefore constant with δ.
Due to its growth with the square of the norm, when δ
is small we can then discard λmax(J

t
RΣ2

RJR).
Using (6) now in the first term of (8) gives

λmax(J
t
MΣ2

MJM ) =

= max
||x||=1

(xtKt
mKmx + 2xtKt

∆Kmx + xtKt
∆K∆x)

≤ max
||x||=1

(xtKt
mKmx + 2|xtKt

∆Kmx| + xtKt
∆K∆x)

≤ max
||x||=1

(||Kmx|| + ||K∆x||)2

≤

[√
λmax(KmKt

m) +
√

λmax(K∆Kt
∆)

]2

.

For the minimum eigenvalue,

λmin(JtΣ2J) ≥ λmin(Jt
MΣ2

MJM ) =

= min
||x||=1

(xtKt
mKmx + 2xtKt

∆Kmx + xtKt
∆K∆x)

≥ min
||x||=1

(xtKt
mKmx − 2|xtKt

∆Kmx| + xtKt
∆K∆x)

≥ min
||x||=1

(||Kmx|| − ||K∆x||)2.

Assuming λmax(K∆Kt
∆) ≤ λmin(KmKt

m) gives then

λmin(Jt
MΣ2

MJM ) ≥

≥

[√
λmin(KmKt

m) −
√

λmax(K∆Kt
∆)

]2

.

Proceeding similarly, we obtain also the bounds

λmax(J
tΣ2J) ≥ λmax(J

t
MΣ2

MJM ) ≥
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≥

[√
λmax(KmKt

m) −
√

λmax(K∆Kt
∆)

]2

and λmin(JtΣ2J) ≤ λmin(Jt
MΣ2

MJM )+λmax(J
t
RΣ2

RJR) �
λmin(Jt

MΣ2
MJM ) , with

λmin(Jt
MΣ2

MJM ) ≤

≤

[√
λmin(KmKt

m) +
√

λmax(K∆Kt
∆)

]2

.

Combining these expressions with (7) and using G =√
M

∑M
j=1 ||

∂
∂wj

V (z)||2, we obtain the following bounds

for the eigenvalue spread of JtΣ2J:

χ(JtΣ2J) =
λmax(J

tΣ2J)

λmin(JtΣ2J)
�

�

[√
λmax(KmKt

m) + G||[H(z) − Hm(z)]+||∞√
λmin(KmKt

m) − G||[H(z) − Hm(z)]+||∞

]2

(10)
and

χ(JtΣ2J) �

�

[√
λmax(KmKt

m) − G||[H(z) − Hm(z)]+||∞√
λmin(KmKt

m) + G||[H(z) − Hm(z)]+||∞

]2

.

(11)
Provided G is itself bounded, as ||[H(z)− Hm(z)]+||∞
tends to zero these bounds tend uniformly to the eigen-
value spread of the sufficient modelling case. In rela-
tion to our initial problem, then, this means that a
good approximation of the sufficient order convergence
speed properties is obtained for sufficiently small val-
ues of ||[H(z) − Hm(z)]+||∞. We note that, in these
expressions, G is a constant, since it depends only on
the poles of Ĥ(z). An analytical assessment of this
dependency is a matter for future work.

5. NUMERICAL EXAMPLE

In (1) we consider that Hm(z−1) is all-pass with uni-
formly distributed poles at 0.8∠±45 and 0.8∠±135. In
this case, for direct form parameters, χ(Jt

mΣ2
mJm) = 1

at Ĥ(z) = Hm(z) and convergence is fast for sufficient
order. Function Hd(z

−1) is also all-pass but with more
concentrated poles, at 0.8∠±5 and 0, 8∠±20. For a suf-
ficiently large δ, therefore, convergence would be slow.
The true value of the eigenvalue spread χ(JtΣ2J) at

Ĥ(z) = Hm(z) as well as the bounds (10) and (11) were
calculated for different values of δ. The results are in
Figure 1, where the fact that ||[H(z)−Hm(z)]+||∞ = δ
is used.
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Fig. 1. True eigenvalue spread, lower and upper
bounds.

6. CONCLUSION

Approximate upper and lower bounds were obtained
for the eigenvalue spread that determines local conver-
gence speed of adaptive IIR filters in the identification
of a system H(z), assuming an undermodelled setting.
These bounds tend uniformly to the eigenvalue spread
of the sufficient order identification of a system Hm(z),
as the norm ||[H(z) − Hm(z)]+||∞ tends to zero. This
result suggests that when there is a good undemod-
elled approximation of a system, as is the case in sit-
uations of greater practical interest, then convergence
speed properties are close to those derived under the
sufficient order assumption.
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