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ABSTRACT

This paper presents a new analytical model for the 

Normalized Least Mean Square (NLMS) adaptive 

algorithm. The new model is derived using a stochastic 

differential equation (SDE) approach. An accurate 

estimate of the steady-state weight-error correlations is 

also derived, which leads to an improved model 

performance for medium and large step sizes. Numerical 

simulations compare the new model with existing models 

and show better agreement with Monte Carlo simulations. 

1. INTRODUCTION 

The Normalized Least Mean Square (NLMS) algorithm 

belongs to the family of stochastic gradient algorithms. 

Compared to the famous Least Mean Square (LMS) 

algorithm, NLMS presents the advantage of normalizing 

the weight vector updates with respect to the input signal 

power. This makes the algorithm less sensitive to 

variations in input power.  

The NLMS algorithm behavior has been studied by 

several authors [1-4] for white and correlated inputs. It is 

well known that the statistical analysis of the algorithm 

behavior is complicated by the normalized weight update. 

This term leads to statistical expectations which are very 

difficult to evaluate. Accurate analysis results have been 

presented [1] and [2] for white inputs and for input 

covariance matrices with two distinct eigenvalues. 

However, the important case of correlated inputs could 

not be solved in closed form using the techniques 

employed in [1,2]. In [3], a new statistical model is 

proposed for the input signal. The input signal distribution 

is modeled as the product of a radial and an angular 

distribution. The resulting model was able to predict the 

algorithm behavior for correlated inputs. However, the 

theoretical model could not follow the knee behavior of 

the mean square error (MSE) of the actual algorithm. 

Steady-state errors could also be verified for correlated 

input signals. In [4], a new analytical model was proposed 

for Gaussian inputs and large number of adaptive 

coefficients. The model in [4] was more accurate than all 

the existing models for correlated Gaussian inputs. 

However, the theoretical predictions using this model still 

present significant errors at the knee of the MSE curve for 

large step sizes. Steady-state errors can also be verified 

for a small number of coefficients.  

This paper proposes a new statistical analysis of the 

NLMS algorithm behavior. The analysis is based on the 

stochastic differential equation approach introduced in [5] 

to study the behavior of recursive stochastic algorithms 

through the associated ordinary differential equation 

(ODE) [6]. This approach has been successfully employed 

in [7] to study the behavior of finite precision 

implementations of adaptive IIR filters. The analysis of 

the NLMS algorithm behavior using the SDE approach, 

however, requires modifications when the step size is 

large. The limitations of the method for large step sizes 

are overcome by an accurate estimation of the algorithm’s 

steady-state behavior. 

The paper is divided in two parts. Section 2 presents the 

analysis of the NLMS algorithm using the SDE approach, 

with its limitations for large step sizes.  Section 3 presents 

new results on the steady-state behavior of the weight-

error correlation matrix, which are used to improve the 

model for large step sizes. Simulation results are provided 

comparing the new model with the model in [4].  

2. NEW NLMS MODEL - THE SDE METHOD 

The update equation of the NLMS algorithm is given by: 

1
T

e n n
n n

n n

X
W W

X X

(1)

where 0 1

T

Nn w n w nW  is the adaptive weight 

vector, 1
T

n x n x n NX is the input data 

vector,  is the step-size and e n  is the estimation error, 

given by: 

ˆ ( )T T

opte n y n y n n z n n nW X W X (2)
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where 0 1

T

opt Nw wW is the true weight vector and 

z(n) is a zero-mean, stationary, white Gaussian noise with 

variance 2

z . Defining the weight-error vector 

( ) optn nV W W , (1) becomes:   

1
T

e n n
n n

n n

X
V V

X X
(3)

The MSE is given by [11]: 

2 2

z xxE e n trace nR K (4)

with Tn E n nK V V  and T

xx E n nR X X .

Equation (4) can be written as a function of the 

eigenvector matrix Q and the eigenvalue matrix :

2 2 2
z zE e n tr n nT

K k (5)

with xx
T

R Q Q , n nT
K Q K Q , diag  and 

n diag nk K . In the following, nk will be 

evaluated using the SDE method. 

Following the procedure outlined in [8], the ODE 

corresponding to (3) is obtained as 

( ) ( )

1 2

2
n t

d t e n n d
E

Tdt d tn n
E e n

V V

V X

VX X
(6)

where tV  is the solution with t n  and  is assumed 

sufficiently small compared to the stability limit (  =2). It 

can be shown that (3) converges weakly to a stable 

equilibrium point *
V .

 It is shown in [5] that the process 

/t n tV V  converges weakly as 0  to 

the Gaussian process t  which is the solution of the 

following linear SDE: 

1 2d t t t dt t d tF V R V (7)

where ( )t  is a Brownian motion, and tF V  and 

tR V  are defined as follows:   

( ) ( )

T

n t

e n nd
t E

d t n n
V V

X
F V

V X X
(8)

( ) ( )

0 0
cov ,

0 0T T
n

n t

e n n e
t

n n
V V

X X
R V

X X X X
(9)

To analyze t  near the equilibrium point *
V , the time-

variant equation (7) can be replaced by the time-invariant 

equation 

1 2* *d n n dt d nF V R V (10)

If F V  is independent of V, then the SDE is linear time-

invariant even away from *
V  [7]. It will be shown that 

this is the case in the present analysis.

Using Itô calculus it can be shown that [5]:  

2

*

* *

T T

T T

d
E n n E n n

dn

E n n

F V

F V R V

(11)

Considering that * 0V  in our problem,  

TTE n n E n n nV V K

and (11) can be rewritten as:  

2

*

* *

T

T T T

d
n n

dn

n

K Q F V K Q

Q K F V Q Q R V Q

 (12) 

To determine the solution of (12), *
F V  must be 

evaluated. From (8), it can be easily shown that 

( ) ( )

Te n n n n
E E t

T Tn n n n
n t

X X X
V

X X X X
V V

(13)

where
Te n n n z nX V (14)

To evaluate (13), approximations are necessary. A 

reasonable approximation is [4]: 

1

1
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X X X X

R
X X

(15)

Now, for nX  Gaussian, T n nX X  is assumed to follow 

as a Chi-square distribution with N degrees of freedom. 

With these approximations (15) becomes [4]: 

0

0

1

2

with 1,1

T

xxT

xx

n n
E

N rn n

r

X X
R

X X

R

(16)

F is then approximated as follows: 

2

0

1

22

xx
xx

x

d
t t

d t N rN

R
F V R V

V
(17)

Assuming xxR  positive define, (12) has a solution: 

0
Tn n

n e e
F F

K K K K (18)

where K  is the solution of the Lyapunov equation: 

IV - 42

➡ ➡



T
FK K F R (19)

Using (17) and the definition of nK , (12) can be 

significantly simplified to: 

22
, 1, ,

2

i
i i i

d
k n k n r i N

dn N
(20)

where T *
R Q R V Q  and diagr R . Note that (20) is 

now a set of N independent equations. Its solution is given 

by: 

2

2
0i i i i

i n
N rok e k k k (21)

with ik  given by (assuming nonzero eigenvalues): 

02

2
i ii

i

N r
k r (22)

The next step is then to calculate R  to obtain ir  in (22). 

Using the approximations 

2
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and

0 0
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(24)

One obtains: 

2

2
02 4

xx z

N N

R
R

r
(25)

Equations (5), (21) (22) and (25) provide the analytical 

model for the MSE of the NLMS algorithm. This model 

provides results equivalent to the model in [4] for small 

step sizes. Fig. 1 shows the theoretical and simulated 

results for ( )x n  and unity variance autoregressive process 

of order 2 with coefficients –0.3 and 0.6 (eigenvalue 

spread of 19). N=20,  = 0.1. The measurement noise is 

white Gaussian with variance equal to 10-6 and 
2

0 74V .
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Fig. 1: Comparisons between (a) simulations, (b) model [4] (---) 

and (c) the new one (___) with 00.1, 19 and K 74 .

For large step sizes, K  becomes larger and the error 

in (22) becomes significant due to the errors derived from 

the approximations made to determine R.  In the next 

section, a better model is derived for the steady-state 

weight-error correlation matrix. 

3. STEADY-STATE WEIGHT ERROR 

CORRELATION MATRIX 

An accurate estimation of K  is obtained using the 

approach used in [4]. Post-multiplying (3) by its 

transpose, taking the expected value and neglecting the 

statistical dependence of x(n) and V(n) leads to the 

recursive expression described in [4, Eq. (13)]. In 

evaluating the necessary expected values, a better 

approximation can be obtained if the following relation 

obtained by simple integration is used: 

1 1
2

2 2 2

0

0 0

2
N N

T

j i

i j

E n n N r rx x (26)

where j ir E x n i x n j  is the correlation between 

delayed samples of the input signal. Using (26) in [4, Eq. 

(13)], results   

2 2 2

1

  2

xx xx

z xx xx xx xx xx

n n d n n

c b n tr n

K K K R R K

R R K R R K R
(27)

where
1

1 1
2 2 2

0

0 0

1
2

0

1

0

2

2 4

2

N N

j i

i j

b N r r

c r N N

d N r

(28)

Pre and post-multiplying  (27)  by QT and Q and taking 

only the main diagonal leads to: 

1n n gk f k (29)

(a)

            (c)

               (b) 
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where
2 2

2 2

2 2

z

d b b

g c

f I
(30)

which has the closed form solution  

1

0

0
n

n i

i

n gk f k f (31)

Assuming convergence of (31) so that  

lim lim 1n nn nk k , then 

2 2
1

2 1
lim

1

z

n

c
n

b
k k A

A
(32)

where 22 2d bA .

Equation (32) describes the steady state value of the main 

diagonal elements of the rotated weigh error correlation 

matrix. It is then possible to use this result in (21) to 

determine the algorithm behavior for large µ without 

depending on an accurate evaluation of R.

Figures 2 and 3 show representative examples of the 

proposed model behavior for =1. The input signal is the 

same as in Fig. 1. 
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Fig. 2: Comparisons between (a) simulations, (b) model [4] (---) 

and (c) the new one (___) with 01, 11 and K 74 .
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Fig. 3: Comparisons between (a) simulations, (b) model [4] (---) 

and (c) the new one (___)  with 01, 75 and K 74 .

4. CONCLUSION

A new statistical analysis of the NLMS algorithm has 

been presented. The new analysis uses the SDE to 

determine a closed form solution for the weight-error 

update equation. The solution has been corrected for the 

case of medium or large step sizes through an accurate 

estimation of the steady-state behavior of the weight-error 

correlation matrix. The new analytical model derived 

improves the results obtained by the existing models. 
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