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ABSTRACT

Several types of robust LMS adaptive filter algorithm

have been proposed, to reduce misadjustment when

impulsive noise is added to the input or reference signal.

In many applications a normalised LMS algorithm is

required, to increase convergence speed.  This paper 

shows that if impulsive noise is present at the filter input

(which is a realistic problem, for example, in some

communications equalisers), the standard NLMS

algorithm provides some robustness to this impulsive

noise.  New normalised LMS algorithms are then

presented with improved robustness to impulsive input

noise. An approximate theoretical analysis is confirmed

by simulations. Finally, we show that, as for NLMS,

simplified approximate arithmetic may be used to reduce

the implementation cost of the new algorithms.

1. INTRODUCTION 

A length-M FIR filter with input x(k) and output y(k) is 

defined by
Ty k kw x k

k

i

 where T is the transpose,

w(k) = [ w0(k) w1(k) ... wM–1(k) ]T is the filter coefficient

vector and  x(k) = [ x(k) x(k–1) ... x(k–M+1) ]T. The error 

between the filter output and reference signal d(k) is 

and in the LMS algorithm [1,2] the

coefficient update at each sample time is given by 

, where  is the step size. 

This requires M individual coefficient updates

e k d k y k

1k kw w e k x

1i iw k w k e k x k , i = 1,..., M (1) 

where xi(k) = x(k–i) is the ith element of x(k).

If impulsive noise (consisting of “spikes” or “outliers”

of large amplitude  and short duration) is added to d(k)

this adds spikes to e(k), and causes coefficient

misadjustment (proportional to ) in (1).  The effect of 

impulsive noise in the input signal x(k) is significantly

worse. If a spike of duration one sample and amplitude

is added to x(k) at sample m, the input signal becomes

'( ) ( )x k x k k m .  In the LMS algorithm each 

coefficient is then subjected to M erroneous updates, and 

severe misadjustment of LMS may occur if  is large.

This can be a real problem, for example in some

communications equaliser applications.

Two classes of “robust” LMS algorithm have been

proposed, to reduce this problem.  In Order Statistic LMS

algorithms [1], each coefficient update in (1) is

independently non–linearly filtered (for example using a 

median filter).  In the second class, which includes the 

least mean M-estimate (LMM) algorithm [3], robust

mixed norm (RMN) algorithm [4], and adaptive threshold

nonlinear algorithm (ATNA) [5], the error e(k) in (1) is

replaced by a modified value.  The performance of all

these algorithms (and others) is compared in [3]. 

Section 2 shows that the conventional NLMS

algorithm alone provides some robustness against

impulsive input noise, and section 3 introduces novel

normalised LMS algorithms which have increased

robustness.  These can be used on their own or in

conjunction with the LMM algorithm to give even greater

robustness. Section 4 shows that, as for NLMS, simplified

approximate arithmetic may be used to reduce the

implementation cost of the new algorithms.

2. ANALYSIS OF LMS AND NLMS 

During the M samples following the input spike (that

is, k = m, ..., m+M–1), the output and the error become

y'(k) = y(k) + wk–m(k) and e'(k) = e(k) – wk–m(k)

respectively. Now to simplify analysis we assume that the

filter coefficients do not change substantially during those

samples.  This is a poor assumption for LMS but, as we

show later, a more reasonable assumption for NLMS, and

the result proves useful for comparing algorithms.  For 

LMS, the total update for the ith coefficient during the M

samples following the input spike would then be:
1
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1i is the update which would occur with no spike

present, and 3i is always negligible in comparison with

the other terms.  If  is large, 4i is typically the largest

term because it is proportional to 2 (although if wi is 

small this may not be so).  If it is therefore assumed, for

simplicity, that the terms 4i are the largest for all i. If the 

input signal is i.i.d. with variance 2

x , then the resulting

misadjusted filter output error variance is given by
2 2 2 2 2( ) ||em i xi

w 4 || x

2 2
w

||2 ||

.  If also the filter 

has converged prior to the input spike, so that its

coefficient vector w is close to optimal, then the variance 

of the reference signal d(k) is 2

d x

2
w ; hence 

2 2 4

em d

2 , (3)

so for large , severe misadjustment of LMS occurs, with

variance approximately proportional to 4 (this is why the

initial assumption that the coefficients do not change is

poor).

In the LMS algorithm and all the un-normalised robust

algorithms discussed in [3], the convergence speed falls as 

the input signal power falls.  To overcome this, in the

normalised LMS (NLMS) algorithm [1,2], the constant

step size  is replaced by the variable step size. 

0 2|| ||

A
N

k ax
.    (4)

Typically A = 0.25 to 0.5.  The small constant a

prevents division by zero.  Even for known input signal

power, NLMS may converge faster than LMS [2], and its

convergence speed is independent of input power. 

Spikes in d(k) do not affect N0, so (if  N0 ) their 

effect on the NLMS and LMS algorithms is very similar.

However, a spike of amplitude  added to the input x(m),

giving as before '( ) ( )x k x k k m , implies that

||x'(k)|| >> ||x(k)|| during the M samples for which x(m) is 

in the filter stores (k = m, ..., m+M–1); this increases the

denominator of (4). If  >> ||x(k)||, then ||x'(k)||  so the 

step size during these samples is approximately
2

0 /N A , from (4). Hence from (3) the error variance

after misadjustment is 2 2 4 2

em d

2

A d

2 , which 

is independent of . Because, for large , this

misadjustment is much smaller than that for LMS, the

original assumption (in section 2) that the coefficients do 

not change, on which our approximate analysis is based,

is more reasonable for NLMS.

The ratio 2 2/d em , which is variance of the 

reference signal divided by the error variance, is the

output SNR, so for the NLMS algorithm the output SNR

after a large spike is given by 21/ A .  For the 

reasonable value A = 0.25, the output SNR would

therefore be 12dB.  If  || x(k) ||, the term 4i becomes

smaller than 2i in (2), so as  decreases the error variance 

decreases and the output SNR with respect to 

misadjustment noise increases. 

To confirm these predictions, an example based on

that in [3] is used. An adaptive filter with M = 9 taps is 

used for system identification of a 9–tap FIR channel with 

coefficients w = [0.2 –0.4 0.6 –0.8 1.0 –0.8 0.6 –0.4 0.2]T.

The channel input signal is a white zero–mean unit–

variance Gaussian process, so the channel output variance 
2

d  is || = 3.4. Gaussian noise is added to the 

reference signal d(k) (i.e. the channel output) to give an 

SNR of 30dB.  Isolated spikes are then added to the 

adaptive filter input x(k), and the output SNR M samples

after each spike is shown in Table 1. Because the

theoretical analysis predicts behaviour which depends on 

the ratio /|| x(k) ||, and E(|| x(k) ||) = 

2||w

xM , the results in 

Table 1 are tabulated against the ratio / xM . The 

presented results are all averages of 100 trials.  It can be 

seen that, as predicted, the output SNR is close to 12dB

for large , and increases as  reduces. Results from a 

second example, using a channel and adaptive filter both 

of length M = 19, are also presented, to confirm that they

are approximately independent of filter length M.

Fig. 1 shows the temporal evolution of the output

noise to signal ratio (NSR) ( 2 /e

2

d ), again averaged over 

100 trials, following three input spikes of amplitudes

given by / xM  = +8, 0 and –8 dB.

3. ROBUST NORMALISED ALGORITHMS 

To reduce misadjustment further, we may replace N0 by

1 2max | |

B
N

M k ax
,   (5)

where max | x(k) |2 is the squared modulus of the largest-

modulus element of x(k). The value of B  required in (5) 

to give the same convergence speed as NLMS depends on

the input signal statistics; for a Gaussian input signal, 

3B A  is suitable.  If  is large, then during the M

samples k = m, ..., m+M–1 the step size in (5) is

approximately 2

1 /( ) 3N B 0 /NM M

2 2 2

A d

.  Hence from

(3) the error variance following misadjustment is
2 (3/em )M

1 0/N N

.  This is again independent of , but 

is smaller by a factor of (M/3)2 than for NLMS.  (This 

factor is 9.5 dB for M = 9, or 16 dB for M = 19.)  As 

decreases, the ratio  rises from 3/M to 

approximately unity, so the performance of (5) converges

towards that of NLMS (4). However, the minimum

output SNR due to misadjustment following a single spike

(which occurs when  || x(k) ||) is 18.4 dB for filter 

length M = 9, or 23.3 dB for M = 19, compared to the 

minimum for NLMS, which is approximately 13 dB, as
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shown in Table 1. Fig. 1 also shows the reduced

misadjustment obtained by using (5). 

To achieve even smaller misadjustment, we may

replace N0 by
2

2 4

(mean | |)

max | |

C

N

k

M k a

x

x
.   (6) 

In this case, for a Gaussian input signal 9C A  is a

suitable choice.  In the presence of a large spike of 

amplitude , the value (mean | x(k) |) /M, so the error

variance is reduced with respect to NLMS by a factor of 

(M3/9)2.  (This factor is 38 dB for M = 9 or 57 dB for M =

19.)  The minimum output SNR due to misadjustment

after a single spike (which occurs when  0.6 || x(k) || ) 

is 21.7 dB for filter length M = 9, or 28.5 dB for M = 19, 

compared to the minimum of 13 dB for NLMS, as shown

in Table 1.  The improvement in SNR obtained using (6)

rather than (5) can also be seen in Table 1, and for large 

spike amplitudes, the use of (6) completely suppresses

misadjustment (indicated by underlining in Table 1).  Fig. 

1 shows the reduced NSR (i.e. increased SNR) obtained 

by using (6), and the complete suppression of

misadjustment for the first two spikes in Fig. 1. However,

the normalised step size N2 in (6) is noisier than N1 in 

(5), and some reduction in convergence speed is observed. 

Another idea, that of suppressing adaptation 

completely based on a binary (yes/no) test to detect spikes 

in the input, was also investigated. However, the

maximum output error variance of this approach was

found to be no less than that achieved using (5). 

4. IMPLEMENTATION ISSUES 

Various methods have been proposed for reducing the 

cost of implementing the standard NLMS computation (4) 

in fixed-point arithmetic, by using certain approximations.

In particular, division may be approximated by a binary

shift [6],[7]; the same approximation may also be applied 

in (5) and (6).  The squaring operation in (4) may also be

replaced by a circuit for approximate squaring [6]; the 

simplest such circuit requires no hardware at all - it simply

maps the bits of the input value to different locations in

the output word. This method can also be used for the 

squaring and fourth power operations in (5) and (6). 

An operation which appears in (5) and (6) but not in 

(4) is the maximum absolute value operator.  For fixed-

point arithmetic there is a simple approximation to this

operation, as follows.  The absolute values are first 

formed in the normal way (negating negative inputs) and

then approximately squared using a method from [6]. The

bitwise-OR of all the results is then formed.  The result of 

the OR operation is never less than the true maximum

(because the OR operation can only increase the number

of ones in the positive binary number, not reduce it). It is

also always less than twice the true maximum; the limiting

case is when the true maximum is exactly a power of two, 

say 2k, and all the binary digits less significant than 2k are 

set to one by the OR-ing operation, giving an output of 

2k+1–1.  Bitwise OR has a very low implementation cost. 

5. DISCUSSION AND CONCLUSIONS 

We have shown that in applications in which impulsive

noise may be present in the filter input, the standard 

NLMS algorithm provides some robustness, unlike LMS.

For NLMS the minimum output SNR due to 

misadjustment after a large input spike is 
2 2/ 1/d em

2

A , for example 12dB if A = 0.25. 

We have introduced two new normalised LMS

algorithms with improved robustness.  For M = 9, their 

minimum output SNR is 5dB – 9dB higher than that of

NLMS.  For M = 19, their minimum output SNR is 10dB

– 15dB higher than that of NLMS.  In the case of the 

second new normalisation (6), the degree of improvement

increases as the spike amplitude increases, so that 

complete suppression of the effects of large spikes is 

achieved.

Finally, we have shown that, as with NLMS,

simplified approximate arithmetic may be used to reduce 

the implementation cost of the new normalisation

formulae.

If there is also impulsive noise in the reference signal,

then any of the above normalised algorithms could be 

combined with the LMM algorithm [3].  Since the LMM 

algorithm would then only have to reject the short spikes 

from the reference signal, it could employ a much shorter 

median filter than is required to reject the effect at the 

adaptive filter output of a spike at its input. 

The new robust normalised LMS algorithms may be of 

use in applications such as communications system

equalisers where a minimum output SNR of 20dB may be

adequate.  If the output SNR is required to be greater, then 

either conventional NLMS or one of the new normalised

algorithms may be combined straightforwardly with the 

LMM algorithm [3] to provide both normalisation and 

greater robustness. 
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/ xM

(dB)

12 8 4 0 –4 –8 –12

NLMS (4), 

M = 9 
13.1 12.5 14.3 15.8 18.1 20.6 23.7

(5) , M = 9 21.8 20.3 20.2 18.4 19.4 21.5 23.7
(6) , M = 9 34.4 32.5 28.9 22.3 21.7 23.7 24.4
NLMS (4), 

M = 19 
13.0 13.1 14.2 16.1 19.0 21.7 24.8

(5) , M = 19 27.3 26.7 25.9 23.5 23.3 24.7 26.7
(6) , M = 19 35.0 35.1 34.8 29.7 28.5 29.1 29.6

Fig 1.  Output NSR ( 2 /e

2

d ) for 3 normalised LMS

algorithms: = NMLS; o = equation (5);  = equation 

(6). Learning curves averaged over 100 trials. M = 9. 

Input spike amplitudes +8, 0 and –8 dB w.r.t. xM , at 

samples number 150, 300 and 450. 

Table 1.  Output SNR ( 2 2/d em ) (dB) after 

misadjustment for 3 normalised LMS algorithms, as a

function of relative input spike amplitude (dB).

underlining indicates that the effects of spike were 

completely suppressed in those cases. 
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