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ABSTRACT
The two most important constant modulus criteria are studied and
compared, exploiting recently obtained results. A theoretical
analysis of the performance is provided and excess output MSE
figures are derived. The answer to the title question is found to
depend on the output error power. In applications where the lower
bound for the output signal-to-noise ratio is small, typically less
than 8 dB, the CM(2,2) criterion can be employed. Otherwise, the
CM(1,2) criterion is preferable. This result can be of great help to
system designers, to select the constant modulus criterion that best
suits their application and their performance objectives.

I – INTRODUCTION

Constant modulus algorithms can be used in adaptive filtering for
channel equalization, interference cancellation or source
separation, in applications like data communications, frequency
modulation broadcasting or radar. Two criteria are realistic for
implementation in systems, they are denoted by CM(1,2) and
CM(2,2) and they are associated with the following cost functions
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where ny denotes the complex-valued filter output.

The theoretical analysis of the performance of adaptive filters
based on these criteria is difficult, due to the modulus operation
involved. Most of the work on this topic has been carried out with
the CM(2,2) criterion, whose cost function admits a fourth order
series development and can exploit appropriate statistical tools,
like the kurtosis [1].
In contrast, no such possibility exists for the CM(1,2) criterion,
which has received little attention, in spite of its attractiveness for
implementation as pointed out in [2]. The corresponding
coefficient updating equation for the adaptive filter is
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with nH the coefficient vector and
*
nX the complex conjugate

of the input data vector. This is just like the equation of the LMS
algorithm with step size δ, except that the reference sequence is

nn yy / . There is no high order term in the updating equation

and an RLS-like algorithm can be used to accelerate the
convergence and improve performance.
The purpose of the present paper is to exploit a set of critical
recent results to refine existing estimations, assess the
performance of the CM(1,2) criterion and provide a comparison of
the two constant modulus criteria. The first of these recent results
concerns the collinearity property : the optimal coefficient vector

obtained with the CM(2,2) criterion is almost collinear with the
vector obtained with the minimum mean square error (MMSE)
criterion, when the output error power is small [3]. Next, an
upper general bound was derived for the excess output error
[4]. Then, a simple and efficient  approximation of the CM(2,2)
cost function, which paved the way for an accurate estimation
of the excess MSE, was introduced [5]. Finally, a link was
established between the two criteria [6].
The paper is organized as follows. The Suyama-Attux
approximation of the CM(2,2) cost function is recalled in
section 2 and an extension is derived in section 3. In section 4,
the connection with the CM(1,2) cost function is developed
and performance estimations are derived. Simulation results
are given in section 5. In the final discussion, the application
areas of the two criteria are explicited and commented upon.

2 – THE SUYAMA-ATTUX APPROXIMATION

The reasoning is as follows. Since the filter coefficient vectors
obtained with the MMSE and CM(2,2) criteria are nearly
collinear when the output error is small, since the excess MSE
is bounded by the square of the output error, which means that
it is very small in this case, then the CM(2,2) cost function can

be expressed accurately in terms of MMSEJ , the cost function

associated with the MMSE criterion. However, there is a
fundamental difference between the two cost functions, namely

22CMJ is insensitive to the sign of the coefficient vector. Thus,

the correct approximation is the product
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with K a scalar to be determined. It is the starting point to
derive the relationship between the coefficient vectors.
In order to express the MMSE solution, the reference signal

samples ns are assumed to have a constant and unit modulus

and the output error is defined by

n
t
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with H the filter coefficient vector. The cost function is

][][
22

nnnMMSE ysEeEJ −==                 (6)

Now, the CM(2,2) cost function also must be expressed in
terms of the output error. Consider the quantity
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where
*
ny is the complex conjugate of ny . To show the

relationship with CM(2,2), it can also be written as
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Returning to equation (7) and using definition (5) for the output
error sequence, the quantity A is expressed by
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Then, the following series development is obtained for the cost
function
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As concerns the product P in (4), it takes the form
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and, invoking the constant modulus property of ns
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Finally, the relation between the two cost functions is
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Now, in the next section it is shown that the term

{ }][ *
nnesRealE is a second order term. Thus, in the

above expression of 22CMJ , all the terms are 4th order

terms with respect to the error sequence ne , except the first

one and a first order approximation is
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In order to obtain the optimal coefficient vector, a derivation
operation is carried out. To that purpose, the cost function  (6) is

rewritten by expanding
2

ne , which yields (15)
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Next , the gradient of the MMSE cost function is
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After substitution of (15) into (14), derivation and some
algebraic manipulations, it appears that the MMSE and
CM(2,2) coefficient vectors are collinear and related by
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Now, the ratio MMSECM HHa /22=    can be expressed

in terms of the output mean square error denoted 0E
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Substituting equation (18) into equation (17) leads to
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Hence, the first order approximation of the
proportionality factor

2/1/22 oMMSECM EHHa −≈=            (20)

Thus, the MMSE and CM(2,2) coefficient vectors are
collinear and close when the MMSE output error is small
and the first order approximation (14) is valid. As
concerns the CM (2,2) output error power, it is given by
the classical expression
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Then, using (20) and (18),
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and the approximation with two terms is
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This estimation is well below the general bound given in

[4], which is approximately 2
0E .

3 – REFINING THE ESTIMATIONS

In order to obtain higher order terms in the above
approximations, the fourth order terms in equation (13)
have to be included in the estimation procedure and they

have to be related to 22
])[( neE in the vicinity of the

optimum. To begin with, the statistics of the variable
*
nnn esu =   have to be analysed and the mean is
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Next, invoking the collinearity in the vicinity of the

optimum, that is taking MMSEaHH =  , we obtain
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Comparing (22) and (25), it is observed that, as long as

the ratio a is smaller than unity, um is greater than the

output error power 22CME and the difference is
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The real and imaginary parts of *
ne are uncorrelated,

zero-mean variables and they have the same power. It is
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worth pointing out that um is real and the rotation of *
ne

performed by ns has introduced a small bias on the real

part. Considering that the optimum is close to the first order
approximation, the following  approximation is made
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A similar approach can be taken to study the other fourth
order terms in the expression (13) of the CM(2,2) cost
function. Finally, summing up all the terms, the following
global approximation is obtained
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Now, using equation (12) and the product P , the symmetrical
second order approximation of the cost function is

2
22 16

3

2

1
PPJCM +≈                             (29)

The second order term in the above expression generates
additional terms in the expression of the coefficient vector ratio,
which is, after a number of simplifications
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The second order approximation is
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The corresponding output error power is obtained by substituting
(31) into (22) which yields
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Since the excess mean square error in (32) cannot take on negative
values, it is clear that this second order approximation can only be
valid for E0 < 2 / 9 .

4 – STUDY OF THE CM(1,2) CRITERION

The cost function (1) can be related to the cost function of the
CM(2,2) criterion, using the expression
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which leads to                                                                          (34)
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Obviously, no series development with a finite number of terms
can be found for this function. However, a fourth order

approximation can be readily obtained since the term )1( ny−
is linked to the error sequence, through

{ }nnn esRealy *1 ≈−                              (35)

Therefore, the last term in the right-hand side of equation (34)
is a fourth order term while the middle term reflects the
difference between the coefficient vectors corresponding to the
two criteria. In order to assess that difference, an analysis of the
output error signal is performed.

The derivation of the cost function 12CMJ with respect to the

filter coefficient vector leads to the equation that defines the
filter coefficient vector
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Therefore, the coefficient vector 12CMH is such that :
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Derivation of equation (2) leads to a similar equation for the
CM(2,2) criterion
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For the sake of completion, the same presentation for the
MMSE criterion is

[ ] [ ]**
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Now, the equalizer output ny can be related to the reference

signal ns by nj
nnn ersy θ)1( +=                       (40)

where nr and nθ are the deviations in amplitude and phase

respectively. If the adaptive filter performs well, the output
error is small and a first order approximation can be made

nnnnn sjrsy )( θ++≈                           (41)

and the MMSE condition (39) takes the form
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Introducing the approximation (41) into equation (38) leads to
the following condition for the CM(2,2) criterion
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Similarly, for the CM (1,2) criterion, using (37)
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The magnitude deviation nr is not involved in (44) while it

comes with the factor 3 in (43). Therefore, the CM(1,2)
equalizer coefficient vector is closer to the MMSE vector than

the CM (2,2) vector. Now, if the MMSE 0E is small, the 3

equalizers produce nearly the same output ny and the variables

nr and nθ can be considered to be the same. Then,

substituting (42) into (43) leads to
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and, exploiting the results obtained in the previous section and
introducing equation (20), the deviation term is approximated
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Next, turning to the CM(1,2) criterion and combining expressions
(44), (42) and (46) leads to the following relation between the
coefficient vectors

[ ]4/1 012 EHH MMSECM +≈                   (47)

Accordingly, the output MSE is approximated by
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Clearly, the CM(1,2) equalizer comes very close to the MMSE
solution when the output error power is small. The validity
domain of the above estimations can be assessed by analysing the
fourth order term in (34), which is subtracted from the fourth order
terms contained in expression (13). Clearly, the validity domain
of estimations (48) and (47) is likely to be large and this is
confirmed by simulations.

5 – SIMULATION RESULTS

An equalizer is considered with QPSK uncorrelated and unit
power symbols. The channel transfer function is

14/
11.01)( −+= ZecZC jπ

                         (49)

The equalizer output MSE is varied by changing the value of the

real scalar 1c The excess MSE values obtained for the CM(2,2)

criterion with a gradient algorithm are shown in fig.1. The
equalizer has N=3 coefficients and the MMSE solution is
computed from theory, according to the definitions, with no delay
on the reference sequence. The general bound is represented in the

figure. For 1c = 9 the output MMSE is E0 = 0.177, which is

smaller than the validity limit 2/9 = 0.222 in equation (32). In

contrast, for 1c = 9.5 , E0 = 0.213 and it is close to the limit. The

results obtained with CM(1,2) are shown in fig.2. The estimation
remains accurate for large values of the MMSE output error
power, as predicted.

6 – CONCLUSION

   For small values of the mean square output error, the filter
coefficient vectors associated with the MMSE, CM(2,2) and
CM(1,2) criteria are nearly collinear. With respect to MMSE, the
proportionality factor is less than one for CM(2,2) and greater
than one for CM(1,2).
Considering (32) and (48), it appears that the excess MSE values
obtained with the two criteria are equal if E0 = 1/6 which
corresponds to an output SNR close to 8 dB. This can serve as a
delimitation for the application areas of the two criteria. In
applications like QPSK data transmission, the lower bound for the
SNR at the output of the equalizer is generally taken greater than
10 dB, to achieve a bit error rate smaller than 10-3 and then,
criterion CM(1,2) can be recommended. The same applies to
frequency modulation with the threshold effect.
From a research perspective, the above results illustrate the
potential of the CM(1,2) criterion for blind adaptive filtering and
more effort should devoted to study further the properties of this
criterion and related algorithms.

Fig.1. Excess MSE for the CM(2,2) criterion

            Fig.2. Excess MSE for the CM(1 ,2) criterion
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