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ABSTRACT

The recursive least-squares (RLS) algorithm is one of the most
popular adaptive algorithms in the literature. This is due to the fact
that it is easily derived and exactly solves the normal equations. In
this paper, we present a very efficient way to recursively estimate
the condition number of the input signal covariance matrix by uti-
lizing fast versions of the RLS algorithm. We also quantify the
misalignment of the RLS algorithm with respect to the condition
number.

1. INTRODUCTION

Adaptive algorithms play a very important role in many diverse ap-
plications such as communications, acoustics, speech, radar, sonar,
seismology, and biomedical engineering [1], [2], [3], [4]. Among
the most well-known adaptive filters are the recursive least-squares
(RLS) and fast RLS (FRLS) algorithms. The latter is a computa-
tionally less complex version of the former. Even though the RLS
is not as widely used in practice as the least-mean-square (LMS)
algorithm, it has a very significant theoretical interest since it be-
longs to the Kalman filters family [5].

The convergence rate, the misalignment, and the numerical
stability of adaptive algorithms depend on the condition number
of the input signal covariance matrix. The higher the condition
number, the slower the convergence rate and/or less stable is the
algorithm. For ill-conditioned input signals (like speech), the LMS
converges very slowly and the stability and the misalignment of the
FRLS are more affected. Thus, there is an interest in computing
the condition number in order to monitor the behavior of adaptive
filters. Unfortunately, there are no simple ways to estimate this
condition number.

The main objective of this paper is to derive a very simple
way to recursively estimate the condition number. The proposed
method is very efficient when combined with the FRLS algorithm;
it requires only L more multiplications per iteration, where L is the
length of the adaptive filter. We also show how the misalignment
of the RLS algorithm is affected by the condition number, output
SNR, and parameter choice.

2. THE RECURSIVE LEAST-SQUARES (RLS)
ALGORITHM

In this section, we briefly derive the classical RLS algorithm in a
system identification context. We try to estimate the impulse re-
sponse of an unknown, linear, and time-invariant system by using
the least-squares method.

We define the a priori error signal e(n) at time n as:

e(n) = y(n) − ŷ(n), (1)

where

y(n) = hT
t x(n) + w(n) (2)

is the system output,

ht =
[

ht,0 ht,1 · · · ht,L−1

]T

is the true (subscript t) impulse response of the system, superscript
T denotes transpose of a vector or a matrix,

x(n) =
[

x(n) x(n − 1) · · · x(n − L + 1)
]T

is a vector containing the last L samples of the input signal x, w is
a white Gaussian noise (uncorrelated with x) with variance σ2

w,

ŷ(n) = hT (n − 1)x(n) (3)

is the model filter output, and

h(n − 1) =
[

h0(n − 1) · · · hL−1(n − 1)
]T

is the model filter of length L.
We also define the popular recursive least-squares error crite-

rion with respect to the modelling filter:

JLS(n) =
n∑

m=0

λn−m
[
y(m) − hT (n)x(m)

]2

, (4)

where λ (0 < λ < 1) is a forgetting factor. The minimization of
(4) leads to the normal equations:

R(n)h(n) = r(n), (5)
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where

R(n) =

n∑
m=0

λn−mx(m)xT (m) (6)

is an estimate of the input signal covariance matrix and

r(n) =

n∑
m=0

λn−mx(m)y(m) (7)

is an estimate of the cross-correlation vector between x and y.
From the normal equations (5), we easily derived the classical

update for the RLS algorithm [1], [3]:

e(n) = y(n) − hT (n − 1)x(n), (8)

h(n) = h(n − 1) + R−1(n)x(n)e(n). (9)

A fast version of this algorithm can be deduced by com-
puting recursively the a priori Kalman gain vector k′(n) =
R−1(n − 1)x(n) [1]. The a posteriori Kalman gain vector
k(n) = R−1(n)x(n) is related to k′(n) by [1]:

k(n) = λ−1ϕ(n)k′(n), (10)

where

ϕ(n) =
λ

λ + xT (n)R−1(n − 1)x(n)
. (11)

3. CONDITION NUMBER OF THE INPUT SIGNAL
COVARIANCE MATRIX

Usually, the condition number is computed by using the 2-norm of
the matrix. In the context of RLS equations, it is more convenient
to use a different norm as explained below.

The covariance matrix R(n) is symmetric and positive defi-
nite. It can be diagonalized as follows:

QT (n)R(n)Q(n) = Λ(n), (12)

where

QT (n)Q(n) = Q(n)QT (n) = I, (13)

Λ(n) = diag [λ0(n), λ1(n), · · · , λL−1(n)] , (14)

and 0 < λ0(n) ≤ λ1(n) ≤ · · · ≤ λL−1(n). By definition, the
square-root of R(n) is:

R1/2(n) = Q(n)Λ1/2(n)QT (n). (15)

The condition number of a matrix R(n) is [6]:

χ [R(n)] = ‖R(n)‖‖R−1(n)‖, (16)

where ‖ · ‖ can be any matrix norm. Note that χ [R(n)] depends
on the underlying norm and subscripts will be used to distinguish
the different condition numbers. Usually, we take the convention
that χ [R(n)] = ∞ for a singular matrix R(n).

Consider the following norm:

‖R(n)‖E =

{
1

L
tr

[
RT (n)R(n)

]}1/2

. (17)

We can easily check that, indeed, ‖ · ‖E is a matrix norm. Also,
the E-norm of the identity matrix is equal to one.

We have:

‖R1/2(n)‖E =

{
1

L
tr [R(n)]

}1/2

=

{
1

L

L−1∑
l=0

λl(n)

}1/2

(18)

and

‖R−1/2(n)‖E =

{
1

L
tr

[
R−1(n)

]}1/2

=

{
1

L

L−1∑
l=0

1

λl(n)

}1/2

. (19)

Hence, the condition number of R1/2(n) associated with ‖ · ‖E

is:

χE

[
R1/2(n)

]
= ‖R1/2(n)‖E‖R−1/2(n)‖E ≥ 1. (20)

If χ [R(n)] is large, then R(n) is said to be an ill-conditioned
matrix. Note that this is a norm-dependent property. How-
ever, according to [6], any two condition numbers χα [R(n)] and
χβ [R(n)] are equivalent in that constants c1 and c2 can be found
for which:

c1χα [R(n)] ≤ χβ [R(n)] ≤ c2χα [R(n)] . (21)

For example, for the 1- and 2-norm matrices, we can show [6]:

1

L2
χ2 [R(n)] ≤ 1

L
χ1 [R(n)] ≤ χ2 [R(n)] . (22)

We now show the same principle for the E- and 2-norm matri-
ces. We recall that:

χ2 [R(n)] =
λL−1(n)

λ0(n)
. (23)

Since tr
[
R−1(n)

] ≥ 1/λ0(n) and tr [R(n)] ≥ λL−1(n), we
have:

tr [R(n)] tr
[
R−1(n)

] ≥ tr [R(n)]

λ0(n)
≥ λL−1(n)

λ0(n)
. (24)

Also, since tr [R(n)] ≤ LλL−1(n) and tr
[
R−1(n)

] ≤ L/λ0(n),
we obtain:

tr [R(n)] tr
[
R−1(n)

] ≤ L
tr [R(n)]

λ0(n)
≤ L2 λL−1(n)

λ0(n)
. (25)

Therefore, we deduce that:

1

L2
χ2 [R(n)] ≤ χ2

E

[
R1/2(n)

]
≤ χ2 [R(n)] . (26)

According to the previous expression, χ2
E

[
R1/2(n)

]
is then a

measure of the condition number of the matrix R(n). In the next

section, we will show how to recursively compute χ2
E

[
R1/2(n)

]
.
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4. RECURSIVE COMPUTATION OF THE CONDITION
NUMBER

The positive number ‖R1/2(n)‖2
E can be easily calculated recur-

sively. Indeed, taking the trace of (6), we get:

tr [R(n)] = λtr [R(n − 1)] + xT (n)x(n). (27)

Therefore

‖R1/2(n)‖2
E = λ‖R1/2(n − 1)‖2

E +
xT (n)x(n)

L
. (28)

Note that the inner product xT (n)x(n) can also be computed in a
recursive way with two multiplications only at each iteration.

Now we need to determine ‖R−1/2(n)‖2
E. The inverse of

R(n) is:

R−1(n) = λ−1R−1(n − 1) − λ−2ϕ(n)k′(n)k′T (n). (29)

We deduce that:

‖R−1/2(n)‖2
E = (30)

λ−1

[
‖R−1/2(n − 1)‖2

E − λ−1ϕ(n)k′T (n)k′(n)

L

]
.

By using (28) and (30), we see that we easily compute

χ2
E

[
R1/2(n)

]
recursively with only an order of L multiplications

per iteration given that k′(n) is known. It is easy to combine the
estimation of the condition number with a fast RLS (FRLS) algo-
rithm. There exist several methods to compute the a priori Kalman
gain vector k′(n) in a very efficient way [1]. Once this gain vec-

tor is determined, the estimation of χ2
E

[
R1/2(n)

]
at each iteration

follows immediately.

5. MISALIGNMENT AND CONDITION NUMBER

We define the normalized misalignment in dB as:

m0(n) = 10 log10 E

[‖ht − h(n)‖2
2

‖ht‖2
2

]
, (31)

where ‖ · ‖2 denotes the two-norm vector. Equation (31) measures
the mismatch between the true impulse response and the modelling
filter.

It can easily be shown, under certain conditions, that [7]:

E
[‖ht − h(n)‖2

2

] ≈ 1

2
σ2

wtr
[
R−1(n)

]
. (32)

We can also show, by using our definition of the condition number,
that:

E

[‖ht − h(n)‖2
2

‖ht‖2
2

]
≈ (1 − λ)L

2

σ2
w

‖ht‖2
2σ

2
x

χ2
E

[
R1/2(n)

]
,

where σ2
x is the power of the input signal x. Finally, we have

a formula for the normalized misalignment in dB (which is valid
only after convergence of the RLS algorithm):

m0(n) ≈ 10 log10

(1 − λ)L

2
+ 10 log10

σ2
w

‖ht‖2
2σ

2
x

+ 10 log10 χ2
E

[
R1/2(n)

]
. (33)

Expression (33) depends on three terms or three factors: the ex-
ponential window, the level of noise at the system output, and the
condition number. The closer the exponential window is to one,
the better is the misalignment but the tracking abilities of the RLS
algorithm will suffer a lot. A high level of noise as well as an input
signal with a large condition number will obviously degrade the
misalignment. With a fixed exponential window and noise, it is
interesting to see how the misalignment will degrade by increas-
ing the condition number of the input signal. For example, by
increasing the condition number from 1 to 10, the misalignment
will degrade by 10 dB. Simulations confirm that.

Usually, we take for the exponential window λ = 1 − 1
K0L

,
where K0 ≥ 3. Also, the second term in (33) represents roughly
the inverse output signal-to-noise ratio (SNR) in dB. We can then
rewrite (33) as follows:

m0(n) ≈ −10 log10(2K0) − oSNR

+ 10 log10 χ2
E

[
R1/2(n)

]
. (34)

For example, if we take K0 = 5 and an output SNR (oSNR) of 39
dB, we obtain:

m0(n) ≈ −49 + 10 log10 χ2
E

[
R1/2(n)

]
. (35)

If the input signal is a white noise, χ2
E

[
R1/2(n)

]
= 1, then

m0(n) ≈ −49 dB. This will be confirmed in the simulations sec-
tion.

6. SIMULATIONS

In this section, we present some results on the condition number
estimation and how this number affects the misalignment in a sys-
tem identification context. We try to estimate an impulse response
ht of length L = 512. The same length is used for the adaptive
filter h(n). We run the FRLS algorithm with a forgetting factor
λ = 1 − 1/(5L). Performance of the estimation is measured by
means of the normalized misalignment [eq. (31)]. The input sig-
nal x(n) is a speech signal sampled at 8 kHz. The output signal
y(n) is obtained by convolving ht with x(n) and adding a white
Gaussian noise signal with an SNR of 39 dB. In order to evaluate
the condition number in different situations, a white Gaussian sig-
nal is added to the input x(n) with different SNRs. The range of
the input SNR is −10 dB to 40 dB. Therefore, with an input SNR
equal to −10 dB (the white noise dominates the speech) we can
expect the condition number of the input signal covariance matrix
to be close to 1 while with an input SNR of 40 dB (the speech
largely dominates the white noise) the condition number will be
high. Figures 1-4 show the evolution in time of the input signal, the
normalized misalignment (we approximate the normalized mis-
alignment with its instantaneous value), and the condition number
of the input signal covariance matrix with different input SNRs
(from −10 dB to 40 dB). We can see, as the input SNR increases,
the condition number degrades as expected since the speech sig-
nal is ill-conditioned. As a result, the normalized misalignment is
greatly affected by a large value of the condition number. As ex-
pected, the value of the misalignment after convergence in Fig. 1
is equal to −49 dB and the condition number is almost one. Now
compare this to Fig. 2. In Fig. 2, the misalignment is equal to −40
dB and the average condition number is 8.2. The higher condition
number in this case degrades the misalignment by 9 dB, which is
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exactly the degradation predicted by formula (33). We can verify
the same trend with the other simulations.
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Fig. 1. Evolution in time of the (a) input signal, (b) normalized
misalignment, and (c) condition number of the input signal covari-
ance matrix. The input SNR is −10 dB.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
1

0.5

0

0.5

1
x 10

4

In
pu

t S
ig

na
l

(a)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
50

40

30

20

10

0

M
is

al
ig

nm
en

t (
dB

)

(b)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

Time (seconds)

C
on

di
tio

n 
N

um
be

r

(c)

Fig. 2. Presentation the same as in Fig. 1. The input SNR is 10 dB.

7. CONCLUSION

The RLS algorithm plays a major role in adaptive signal process-
ing. We proposed a simple and an efficient way to estimate the
condition number of the input signal covariance matrix. We have
shown that this condition number can be easily integrated in the
FRLS structure at a very low cost from an arithmetic complexity
point of of view. Finally, we have shown how the misalignment of
the RLS depends on the condition number.
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Fig. 3. Presentation the same as in Fig. 1. The input SNR is 20 dB.
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Fig. 4. Presentation the same as in Fig. 1. The input SNR is 40 dB.
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