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ABSTRACT

Allowing for perturbations in speed and turn rate, the state of a
target moving in a coordinated turn obeys a nonlinear stochas-
tic differential equation which cannot be discretised exactly. Ex-
isting algorithms for coordinated turn tracking avoid this prob-
lem by ignoring perturbations in the continuous-time model and
adding process noise only after discretisation. We retain this mod-
elling by discretising using first and second order Taylor approx-
imations to the continuous-time coordinated turn dynamic model.
The discrete-time models are used as the basis for a particle filter
for tracking a target moving in a coordinated turn. The perfor-
mances of the discretisation techniques and the effect of different
coordinate systems on tracking performance are examined.

1. INTRODUCTION

A coordinated turn (CT) commonly refers to a target manoeuvre
executed under constant speed along a circular path at a constant
altitude. This type of motion is common in civil aircraft. In such
cases the horizontal motion and vertical motion of the target can
be considered to be decoupled and therefore tracked separately.
We restrict our attention to the horizontal motion of the aircraft
as the vertical motion can be tracked separately using a simple
linear/Gaussian model [2].

The aim of this paper is to develop suitable models to describe
the horizonal motion of an object undergoing a CT and to propose
and analyse algorithms for tracking the object. We begin with a
continuous-time dynamic model to describe the evolution of the
state of a target undergoing a coordinated turn. Although the CT
model prescribes constant speed and constant turn rate this is an
idealisation which is not met in practice. The dynamic model used
here therefore adds small perturbations, modelled as independent
Wiener processes, to the speed and turn rate. The target state is to
be recursively estimated from noisy discrete-time measurements
of the target’s range and bearing.

Solution of the tracking problem requires recursive computa-
tion of the distribution of the target state conditional upon the mea-
surement history. The necessary theory is readily available [8] but
a closed-form solution for the posterior distribution cannot be ob-
tained for the nonlinear dynamic and measurement equations used
here. It is therefore necessary to resort to approximations.

The majority of filtering approximations, e.g., linearisation
[8], the unscented transformation [9], debiasing [11] or particle fil-
ters [6], rely on the availability of a stochastic difference equation
describing the evolution of the target state. In most target track-
ing applications such an equation can be readily derived from the
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continuous time dynamic equation. This is not so for the nonlin-
ear dynamic equation used here. However, a stochastic difference
equation which approximates the CT motion can be derived. In
this paper we derive first and second order weak Taylor approxi-
mations [10]. Previous work on CT tracking has concentrated on
discretisation of the drift function but has ignored the driving pro-
cess [2, 7]. This is undesirable since the driving process of the
continuous-time dynamic model is selected in order to model a
certain characteristic of the target motion. In order to retain this
modelling in the discrete-time approximation the driving process
must also be discretised.

Given a stochastic difference equation for the target motion
any number of methods can be used to approximate the posterior
distribution. In this paper we propose a particle filtering algorithm
[6]. Particle filters represent the posterior distribution of the tar-
get state by a set of random samples, or particles, with associated
weights [1, 6]. Discretisation using the first order weak Taylor ap-
proximation has been suggested in the context of particle filtering
in [5]. For m discretisation intervals per sampling interval and
n particles, convergence of this scheme in m and n was proved
under the condition that m(n) → √

n as n → ∞. It may be hy-
pothesised that similiar convergence results could be obtained for
the more accurate discretisation used in this paper.

An important issue in CT tracking is the effect of the coordi-
nate system used in the target state on tracking accuracy. It was
shown in [7] that, when using the EKF, better performance can
be achieved if the target velocity is expressed as a magnitude and
direction, i.e., polar velocity, instead of in the x and y directions,
i.e., Cartesian velocity. Motivated by these results, the dependence
of tracking performance on the velocity model will be investigated
for the more realistic CT motion model used here.

Throughout this paper it is assumed that we begin tracking
at the start of the turn with some prior distribution for the target
state and finish tracking at the end of the turn. A practical tracking
algorithm must also include mechansims for transitioning between
the different modes of flight [2].

The paper is organised as follows. Section 2 contains the dy-
namic and measuremen models. Discretised approximations of the
dynamic models are derived in Section 3 and used in the develop-
ment of a particle filtering algorithm in Section 4. The perfor-
mance of the tracking algorithm is analysed in Section 5. Conclu-
sions are given in Section 6.

2. CT DYNAMIC AND MEASUREMENT MODELS

Stochastic differential equations (SDEs) describing the motion of
an object undergoing a CT will be given for the polar velocity and
Cartesian velocity models.
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2.1. Polar velocity dynamic model

For the polar velocity model, the state vector is taken as xt =
(ξt, ζt, st, θt, ωt)

′ where ξt and ζt are, respectively, the x and y
co-ordinates of target position, st is the target speed, θt is the target
heading and ωt ∈ R is the turn rate. The target state is the solution
of the Itô SDE

dxt = fp(xt) dt + gp dβt, t > 0, (1)

where x0 ∼ π0, {βt = (β1
t , β2

t )′} with {β1
t } and {β2

t } mutually
independent standard Wiener processes and

fp(xt) = (st cos(θt), st sin(θt), 0, ωt, 0)
′

gp =

(
0 0 σs 0 0
0 0 0 0 σω

)′

The process {βt} is assumed to be independent of x0.

2.2. Cartesian velocty dynamic model

For the Cartesian velocity model, the target state
zt = (ξt, ζt, ξ̇t, ζ̇t, ωt)

′ satisfies

dzt = fc(zt)dt + gc(zt)dβt, t > 0, (2)

where z0 ∼ �0 is independent of {βt} and

fc(zt) = (ξ̇t, ζ̇t,−ωtζ̇t, ωtξ̇t, 0)
′

gc(zt) =

(
0 0 σsξ̇t /st σsζ̇t /st 0
0 0 0 0 σω

)′
.

with st =

√
ξ̇2

t + ζ̇2
t .

2.3. Measurement model

Measurements of the target position in polar co-ordinates are made
at times t1, t2, . . . by a sensor located at the origin. For the polar
velocity dynamic model, the measurement equation is

yk = h(xtk) + ek =

( √
ξ2

tk
+ ζ2

tk

arctan(ζtk/ξtk)

)
+ ek (3)

where {ek ∼ N(0, R)} is white and independent of the initial
state x0 and the Wiener process {βt}. The measurement equation
for the Cartesian velocity dynamic model is similarly defined.

3. DISCRETISATION OF THE CT DYNAMIC MODEL

3.1. The Euler approximation

The Euler approximation is obtained by applying the Itô lemma
[8] to the integral form of the SDE and retaining only single in-
tegral terms. The Euler approximation to the polar velocity dy-
namic model leads to the following stochastic difference equation
for t > τ ≥ 0:

xt = ap,1(xτ ) + Gp,1wt (4)

where ap,1(xτ ) = xτ + (t − τ )fp(xτ ), Gp,1 =
√

t − τgp and
wt ∼ N(0, I2) with Im the m × m identity matrix.

The Euler approximation for the Cartesian velocity model is
found in a simliar manner to give the following approximation:

zt = ac,1(zτ ) + Gc,1(zτ )wt (5)

where ac,1(zτ ) = zτ +(t− τ )fc(zτ ), Gc,1(zτ ) =
√

t − τgc(zτ )
and wt ∼ N(0, I2).

The Euler approximation is an order 1 weak Taylor scheme
[10]. This means that x̂t generated according to (4) satisfies, with
β = 1,

|E{g(xt) − g(x̂t)}| ≤ C(t − τ )β (6)
where g : R

nx → R is a 2(β+1) times continuously differentiable
function and C is a constant. An approximation which satisfies (6)
with a larger value of β, therefore providing faster weak conver-
gence, can be obtained by retaining more terms in the stochastic
Taylor expansion.

3.2. An order 2 weak Taylor approximation

Higher order Taylor approximations to a SDE can be obtained by
repeated application of the Itô lemma. The order 2 weak Taylor
approximation to the SDE governing target motion for the polar
velocity model can be found, after some working, as

xt = ap,2(xτ ) + Gp,2(xτ )wt (7)

where, with δ = t − τ , wt ∼ N(0, I4) and

ap,2(xτ ) =

⎛
⎜⎜⎜⎝

ξτ + δsτ cos(θτ ) − δ2sτωτ sin(θτ )/2
ζτ + δsτ sin(θτ ) + δ2sτωτ cos(θτ )/2

sτ

θτ + δωτ

ωτ

⎞
⎟⎟⎟⎠

Gp,2(xτ ) = Ep(xτ )Vδ

with

Ep(xτ ) =

⎛
⎜⎜⎜⎝

σs cos(θτ ) 0 0 0
σs sin(θτ ) 0 0 0

0 0 σs 0
0 σω 0 0
0 0 0 σω

⎞
⎟⎟⎟⎠

Vδ =

( √
δ3/3 0√
3δ/2

√
δ/2

)
⊗ I2

where ⊗ denotes the Kronecker product. Random variables gen-
erated according to (7) satisfy (6) with β = 2.

The weak order 2 Taylor approximation to the SDE governing
the target motion for the Cartesian velocity model is

zt = ac,2(zτ ) + Gc,2(zτ )wt (8)

where wt ∼ N(0, I4) and

ac,2(zτ ) =

⎛
⎜⎜⎜⎜⎝

ξτ + δξ̇τ − δ2ωτ ζ̇τ/2

ζτ + δζ̇τ + δ2ωτ ξ̇τ/2

ξ̇τ − δωτ ζ̇τ − δ2ω2
τ ξ̇τ/2

ζ̇τ + δωτ ξ̇τ − δ2ω2
τ ζ̇τ/2

ωτ

⎞
⎟⎟⎟⎟⎠

Gc,2(zτ ) = Ec(zτ )Vδ

with

Ec(zτ ) =

⎛
⎜⎜⎜⎜⎝

σsξ̇τ/sτ 0 0 0

σsζ̇τ/sτ 0 0 0

0 −σω ζ̇τ σs(ξ̇τ − δωτ ζ̇τ )/sτ 0

0 σω ξ̇τ σs(ζ̇τ + δωτ ξ̇τ )/sτ 0
0 0 0 σω

⎞
⎟⎟⎟⎟⎠

where sτ =

√
ξ̇2

τ + ζ̇2
τ .

The order 2 weak Taylor approximation will be referred to as
the TS2 approximation.
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4. PARTICLE FILTERING ALGORITHMS

In this section the discrete-time dynamic models derived in Section
3 are used to develop a particle filtering algorithm for CT target
tracking. The algorithm will be developed using the state vector
xt for the polar velocity dynamic model although it is equally ap-
plicable to the Cartesian velocity model.

A particle filter represents the posterior distribution of the tar-
get state by random samples with associated weights. A common
way of acquiring the random samples is via sequential importance
sampling (SIS) [1]. In this paper a variant of SIS called the aux-
iliary particle filter [13] is used. The use of the auxiliary particle
filter is motivated by the need to avoid particle duplication when
performing resampling [12].

Assume that the posterior distribution of the target state at time
tk, k ≥ 0 is represented by a set of particles x1

tk
, . . . , xn

tk
with

weights w1
k, . . . , wn

k . Using this particle set the posterior density
at time k + 1 can be approximated as

p̂(xtk+1 |yk+1) ∝ p(yk+1|xtk+1)

n∑
i=1

wi
kp(xtk+1 |xi

tk
) (9)

The PF seeks a sample from the mixture distribution (9) which can
be interpreted as sampling from

p̂(xtk+1 , c|yk+1) ∝ p(yk+1|xtk+1)p(xtk+1 |xc
tk

)wc
k (10)

where c ∈ {1, . . . , n}, referred to as the auxiliary variable, is an
index on the mixture. The idea of the auxiliary particle filter is to
sample from (10) using an importance density of the form

q(xtk+1 , c|yk+1) ∝ p(yk+1|µc
k+1)p(xtk+1 |xc

tk
)wc

k (11)

where µc
k+1 is a quantity which characterises p(xtk+1 |xc

tk
). For

i = 1, . . . , n, we select ci = l with probability proportional to
p(yk+1|µl

k+1)w
l
k and draw xi

tk+1
from p(·|xci

tk
). The weight up-

date factor can be obtained, after dividing (10) by (11), as

p(yk+1|xi
tk+1)/p(yk+1|µci

k+1), i = 1, . . . , n. (12)

In the following we use µc
k+1 ∼ p(·|xc

tk
) and refer to the resulting

algorithm as the auxiliary bootstrap filter (ABF). A draw from the
transition density p(xtk+1 |xtk) is approximated by splitting the
sampling interval into m discretisation intervals and generating,
for l ∈ {1, 2},
xtk+(j+1)Tk/m = ap,l(xtk+jTk/m) + Gp,l(xtk+jTk/m)wtk,j

for j = 0, . . . , m − 1 where Tk = tk+1 − tk and wtk,j ∼
N(0, I2l).

5. PERFORMANCE ANALYSIS

The analysis of this section will examine separately the Euler ap-
proximation vs. the TS2 approximation and the polar velocity
model vs. the Cartesian velocity model.

The following scenario will be used. The initial state x0 ∼
N(µ0, Σ0) with

µ0 = (1000, 2650, 150, π/2,−π/45)′

Σ0 = diag(400, 400, 25, (5π/180)2, (0.2π/180)2)

The driving noise parameters are σ2
s = 1/5 and σ2

ω = 5 × 10−7.
Target trajectories are generated according to (1) using the Euler

approximation with m = 1000 intervals per sampling instant. The
measurement noise covariance matrix is R = diag(100, (π/180)2).
Measurements are collected for 120s with a constant sampling pe-
riod. Error statistics are computed using 1000 realisations.

5.1. Euler approximation vs. TS2 approximation

In this set of simulations the ABF with the Euler and TS2 approx-
imations is applied to the scenario described above. The polar ve-
locity target dynamic model is used and the number of particles is
set to n = 2000.

The statistic used here is the root mean square (RMS) error,
i.e, the square root of the time averaged MSE. The RMS errors of
the y-velocity ζ̇t and turn rate ωt are plotted against the number
m of discretisation intervals per sampling period in Figures 1 and
2 for sampling periods of T = 2s and T = 5s respectively. The
main difference between the two discretisation techniques arises in
the estimation of the target velocity. For accurate estimation of the
y-velocity the TS2 approximation requires only a single discreti-
sation interval per sampling period for both T = 2s and T = 5s
while the Euler approximation requires m = 4 discretistion in-
tervals for T = 2s and m = 8 discretistion intervals for T = 5s.
Similiar results are obtained for the remaining elements of the state
vector with the exception of the turn rate which is estimated accu-
rately by both discretisation techniques even for m = 1.
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Figure 1: RMS error plotted against the number of discretisation
intervals per sampling period for the ABF-TS2 (solid) and ABF-E
(dashed) using the polar velocity model. Results are shown for (a)
ζ̇t and (b) ωt. The sampling period is 2 seconds.
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Figure 2: RMS error plotted against the number of discretisation
intervals per sampling period for the ABF-TS2 (solid) and ABF-E
(dashed) using the polar velocity model. Results are shown for (a)
ζ̇t and (b) ωt. The sampling period is 5 seconds.
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5.2. Polar velocity model vs. Cartesian velocity model

The comparison between the polar and Cartesian velocity dynamic
models is performed with the TS2 approximations. The sample
size for the ABF is 2000 and m = 1 discretisation interval per
sampling period is used. Figure 3 shows the mean squared er-
rors of the estimators of x-velocity and turn rate plotted on a log
scale against time. The posterior Cramér-Rao bound (PCRB), de-
rived using the method of [3], is also shown. Little difference can
be discerned between the performances of the ABF-TS2 with po-
lar and Cartesian velocity models. This can be attributed to the
accuracy of the TS2 approximation which renders negligible any
differences due to the form of the state vector. To demonstrate
this the simulations are repeated with a sampling period of 5 sec-
onds with the results shown in Figure 4. An appreciable difference
between the performances of the two coordinate systems can be
observed with the ABF-TS2 performing significantly better with
the polar velocity dynamic model, particularly for estimation of
the turn rate. This is in agreement with the results obtained in [7]
using the extended Kalman filter with a simpler dynamic model.

A point of interest is the discrepancy between the accuracy
of the position and velocity estimates and the PCRB. This dis-
crepancy does not disappear even for larger numbers of particles.
A possible explanation is the presence of “asymptotic biasedness”
which has been shown to result in an optimistic PCRB for bearings-
only tracking [4]. Asymptotic biasedness is a result of the finite
range of the angle measurements.
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Figure 3: Mean square error plotted against time for the ABF-
TS2 using the polar velocity model (dashed) and Cartesian veloc-
ity model (dotted). Results are shown for (a) ξ̇t and (b) ωt. The
sampling period is 2 seconds. The PCRB is shown as a solid line.
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Figure 4: Mean square error plotted against time for the ABF-
TS2 using the polar velocity model (dashed) and Cartesian veloc-
ity model (dotted). Results are shown for (a) ξ̇t and (b) ωt. The
sampling period is 5 seconds. The PCRB is shown as a solid line.

6. CONCLUSIONS

A new approach to coordinated turn tracking in which stochastic
Taylor series expansions are used to provide discrete-time approx-
imations to the target dynamics was developed. The form of the re-
sulting stochastic difference equation describing the target motion
does not permit exact solution of the tracking problem so a particle
filtering algorithm, which is asymptotically exact, was proposed.
A simulation analysis showed that a second order stochastic Tay-
lor series expansion provides accurate discretisation and that better
performance can be obtained by storing the target velocity in polar
coordinates as opposed to Cartesian coordinates.
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