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ABSTRACT

Multipaths cause major impairments to navigation with global po-

sitioning systems (GPS). Indeed, Non-Line-of-Sight (NLOS) prop-

agation is well known to bias GPS position estimates. A recent

methodology has been proposed to overcome this limitation by

estimating simultaneously the kinematic states and the multipath

biases all along the observation interval. However, multipaths

clearly occur relatively infrequently during time intervals of fixed

duration. This paper studies a particle filtering algorithm for joint

detection and estimation of multipath biases. A Rao Blackwellized

approach allows to estimate the kinematic states by extended Kalman

filters whereas multipath detection is achieved by an appropriate

fixed lag particle filter.

1. INTRODUCTION

The Global Positioning System (GPS) utilizes the concept of Time

of Arrival (TAO) ranging to determine a vehicle position. Any user

is equipped with a receiver that estimates the propagation delays of

signals broadcast by GPS satellites. Four measurements (i.e. four

distances between the vehicle and the GPS satellites) are necessary

at each time instant to solve the navigation problem. Indeed, there

are four unknowns for this problem: the position in 3 dimensions

and the receiver clock offset with respect to GPS reference time.

However, the performance of GPS is severely degraded in a mul-

tipath environment. Because of NLOS situations, the GPS signal

is reflected several times before arriving to the receiver. A wrong

timing information is measured and therefore the positioning solu-

tion is biased.

A new Kalman filter approach has been recently studied to track si-

multaneously the kinematics of the vehicle and the biases induced

by multipaths [1]. The proposed algorithm consisted of augment-

ing the state vector with biases associated to the satellites subjected

to multipath effects. An improved accuracy has been observed

with this method for estimating the vehicle position. However, this

approach does not allow to detect the presence of multipaths. Con-

sequently, it is reliable in known multipath situations. This paper

studies a new particle filtering algorithm that performs multipath

detection and bias estimation. This algorithm allows to estimate

the position of a vehicle in any multipath environment.

Section 2 formulates the GPS problem in the presence of multi-

paths. Section 3 studies the particle filter algorithm for joint detec-

tion and estimation of multipath effects. The proposed approach

is based on an augmented state vector which contains multipath

biases (as in [1]) but also indicators which reveal the presence or

absence of multipaths. This augmented state vector is then esti-

mated by a Rao-Blackwellized fixed lag particle filter. Section 4

is devoted to simulation results which illustrate the performance of

the proposed algorithm. Conclusions and perspectives are reported

in section 5.

2. MULTIPATH MODEL

2.1. Effects of Multipath on the GPS Measurements

GPS is based on Code Division Multiple Access (CDMA) tech-

niques. The emitted signal is spread by pseudo-random sequences

whose good autocorrelation properties allow to estimate the prop-

agation delay. The maximum of the autocorrelation is obtained

when the signal and its replica are in phase. As a consequence,

the transmitted signal and the receiver local replica have to be

synchronized to determine the propagation delay. Note that the

interferences between the different satellites are weak since the

transmission is based on nearly orthogonal spread spectrum se-

quences. In the presence of multipaths, the correlation peak is dis-

torted yielding a biased estimation of the satellite to receiver range.

The measurement errors are limited by the width of the correlation

peak (typically 100m in civil applications). Several measurements

can be affected at the same time depending on the relative geom-

etry of the receiver and the satellites. The problem addressed in

this paper is twofold: 1) detecting the presence of multipaths on

all received GPS measurements, 2) estimating the biases induced

by these detected multipaths. The state space model used to solve

this problem is detailed in the next section.

2.2. State Space Model

We propose to formulate the multipath detection problem as an

abrupt change detection problem. The state vector is classically

composed of the unknown kinematic parameters (e.g. the position

and its derivatives) in usual navigation applications. This paper

shows that augmenting the dimension of the state vector allows

joint detection/estimation of multipaths. We define for any vector

r and p, q (p < q), rq
p = (rp, . . . , rq). The following GPS state

space model is then considered:

X t = FtX t−1 + Btwt, (1)

λt ∼ p(λt), (2)

Y t = ht(X t, λ
t
0) + Dtvt, (3)

where (wt)t≥0 and (vt)t≥0 are white noise sequences (wt, vt ∼
N (0, I), I being the identity matrix). Denote as ns the number of

visible satellites (or equivalently the number of available measure-

ments at time t). X t = (xt, bt, mt)
T (∈ R

ns+8) is a state vector
whose components are detailed below:
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• xt stands for the vehicle position (3 coordinates) and ve-

locity (3 coordinates) in the Earth Centered Earth Fixed

(ECEF) system of coordinates,

• bt is composed of the GPS receiver clock offset and its

derivative (2 components),

• mt ∈ R
ns is the stacked vector of the multipath biases

associated to the GPS measurements.

The dynamic behavior of the vehicle is conveniently represented

by a position-velocity model where the acceleration is a white

noise sequence of standard deviation σa. The multipath measure-

ment biases are defined as random-walks monitored by a white

noise of standard deviation σm. The drift characteristics of the

GPS clock are described by the Allan variance parameters σ2
b and

σ2
d [2]. Due to the independence between xt,bt and mt, Ft and

Bt are block-diagonal matrices such that:

Ft =

⎛⎝ At 0 0
0 Ct 0
0 0 I

⎞⎠, BtB
T
t =

⎛⎝ Qt 0 0
0 Σt 0
0 0 σ2

mI

⎞⎠ .

The diagonal blocks of Ft and BtB
T
t are recalled below:

Ct =

(
1 ∆t
0 1

)
, At =

⎛⎝ Ct 0 0
0 Ct 0
0 0 Ct

⎞⎠ ,

Et =

(
σ2

a
∆t3

3
σ2

a
∆t2

2

σ2
a

∆t2

2
σ2

a∆t

)
, Qt =

⎛⎝ Et 0 0
0 Et 0
0 0 Et

⎞⎠ ,

Σt =

(
σ2

b∆t + σ2
d

∆t3

3
σ2

d
∆t2

2

σ2
d

∆t2

2
σ2

d∆t

)
,

where ∆t is the sampling period.

The indicator vector λt = (λt,1, . . . , λt,ns) monitors the

transitions induced by multipath on each measurement. More pre-

cisely, λt,i = 1 indicates the presence of a change at time t for

the ith measurement and λt,i = 0 otherwise (there is a change

when a multipath appears or disappears at time t). The indicator

variable λt,i is classically assumed to be distributed according to

a Bernoulli distribution:

P [λt,i = 1] = β and P [λt,i = 0] = 1 − β. (4)

The variables λt,1, . . . , λt,ns are assumed to be independent.

The observation vector is formed of the GPS measurements

which are the geometric ranges from the receiver to the satellites.

These measures are corrupted by different sources of errors includ-

ing the GPS receiver clock offset and the multipath biases:

Y t,i =
√

‖xt − xs,i‖2 + bt + εt,imt,i + Dtvt,

where xs,i denotes the position of the ith satellite in the ECEF

frame, bt is the receiver clock offset and εt,i = ⊕t
k=1λk,i is de-

fined as follows (⊕ is the exclusive or):

εt,i = 1 in the presence of a multipath bias,

εt,i = 0 otherwise.

It is interesting to note that each GPS measurement is associated

with a multipath bias, so that the dimension of the observation

vector Y t and the dimension of the bias vector mt are both equal

to the number of visible satellites ns.

3. DETECTION/ESTIMATION METHOD

3.1. Sequential Monte Carlo Methods

Sequential Monte Carlo methods (SMC) provide a convenient frame-

work to joint estimation and detection of multipath biases. These

methods consist of simulating samples distributed according to

posterior probability density functions (pdfs) such as p(X t
0, λ

t
0|Y t

1).

The simulated samples can then be used to compute various quan-

tities such as the minimum mean square error estimates of the

states: E(X t|Y t
1) and E(λt|Y t

1). A Rao-Blackwellized approach

can be applied advantageously to make the most of the model

structure. Indeed, given λt
0, p(X t

0|Y t
1, λ

t
0) can be classically ap-

proximated by a Gaussian distribution whose parameters can be

computed by an Extended Kalman Filter (EKF). The Rao-Black-

wellized Particle Filter (RBPF) marginalizes λt, so that the indi-

cator states only are estimated by a particle filtering method. The

variance of the estimates is then significantly reduced.

Particle filtering is based on a sequential importance sampling re-

sampling combination. Importance sampling provides a solution

to obtain a set of weighted samples, called particles, that represent

the posterior pdf. The particles (λt
0)

i, i = 1, . . . , N , are gener-

ated from an arbitrary proposal distribution q(λt
0|Y t

1). They are

then assigned importance weights to correct for the discrepancy

between p and q. The weights are classically defined as:

wt((λ
t
0)

i) =
p((λt

0)
i|Y t

1)

q((λt
0)i|Y t

1)
.

However, the variance of the importance weights is bound to in-

crease until all but one particle have negligible weights. A resam-

pling step is then introduced so that only the particles with high

importance weights are propagated. The reader is invited to con-

sult [3] for more details.

3.2. The Fixed Lag RBPF

GPS measurements are affected by multipaths during an unknown

time interval. As a result, the detection performance should be

significantly improved by considering near future observations to

generate the particles (λt
0)

i. In order to achieve this, we propose

to use the standard proposal distribution p(λt|λt−1
0 , Y t+∆

1 ). It

is important to note that the indicator vector λt takes values in a

finite set S of cardinal |S| = 2ns . Consequently, the future state

space can be fully explored to compute analytically the proposal

distribution:

p(λt|λt−1
0 , Y t+∆

1 ) =
∑

λt+∆
t+1

p(λt, λ
t+∆
t+1 |λt−1

0 , Y t+∆
1 ).

However, such a procedure turns out to be highly computationally

demanding since the sum covers |S|∆ = 2ns×∆ terms. Different

solutions can be used to reduce this computational cost. Wang

et als. [4] proposed to explore only the most likely future paths

by means of pilots in the delayed pilot sampling algorithm. This

paper proposes a simpler procedure which takes advantage of the

sparseness of multipath events. This procedure assumes that at

every time instant t an absence of transition between time t + 1
and time t + ∆ is far more likely than all other possibilities. The

proposal distribution can then be approximated as follows:

P [λt = sj |λt−1
0 , Y t+∆

1 ] � P [λt = sj , λ
t+∆
t+1 = 0|λt−1

0 , Y t+∆
1 ],
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where (sj)j=1,...,|S| ∈ S is a possible value of the indicator vec-

tor λt. The proposed algorithm consists of generating particles ac-

cording to the approximated discrete distribution

P [λt = sj |λt−1
0 , Y t+∆

1 ] and computing the corresponding im-

portance weights.

3.3. Algorithm description

This section details the different steps of the fixed lag RBPF at

a given time instant t. The importance sampling is performed as

follows:

For each particle (λt)
i, i = 1, . . . , N :

• For each element (sj) ∈ S,

set (λt
0)

i
j =

((
λt−1

0

)i
, (λt)

i = sj ,
(
λt+∆

t+1

)i
= 0

)
.

• Run |S| × (∆ + 1) steps of the extended Kalman filter

(k = 0, . . . , ∆ and j = 1, . . . , |S|), which yield the a pos-

teriori estimates X̂
i

t+k,j and the associated error covari-

ance matrices P i
t+k,j such that:

p(xt+k|(λt+k
0 )i

j , Y
t+k
1 ) ∼ N (X̂

i

t+k,j , P
i
t+k,j),

The innovation pdfs p(Y t+k|(λt+k
0 )i

j , Y
t+k−1
1 ) are also

computed.

• Generate the new particle according to the proposal dis-

tribution: q((λt)
i|(λt−1

0 )i, Y t+∆
1 ) =

∑|S|
j=1 γi

jδ((λt)
i −

sj), where δ denotes the Dirac distribution,

γi
j = γ̃i

j

⎛⎝ |S|∑
k=1

γ̃i
k

⎞⎠−1

� P [(λ)i
t = sj |λt−1

0 , Y t+∆
1 ],

γ̃i
j =

∆∏
k=0

p(Y t+k|(λt+k
0 )i

j , Y
t+k−1
1 )p((λt+k)i

j).

and p((λt+k)i
j) is obtained from the Bernouilli priors de-

fined in 4. The innovation pdfs p(Y t+k|(λt+k
0 )i

j , Y
t+k−1
1 )

are evaluated from the Kalman runs.

• Compute the importance weights. For (λt)
i = sj , the

weights can be updated as follows:

wt((λ
t
0)

i) ∝ wt−1((λ
t−1
0 )i)

p(Y t|(λt
0)

i
j , Y

t−1
1 )p((λt)

i
j)

γi
j

.

A classical approximation of the filtering distribution p((λt
0)

i|Y t
1)

can be obtained by the random measure (wt((λ
t
0)

i), (λt
0)

i)). How-

ever, the algorithm can be improved by introducing a discount fac-

tor α [5]. This factor allows newer measurements to affect the state

estimates more than older measurements. The discounted weights

are then computed as follows:

wt((λ
t
0)

i) ∝ [wt−1((λ
t−1
0 )i)]

α p(Y t|(λt
0)

i
j , Y

t−1
1 )p((λt)

i
j)

γi
j

,

with 0 < α < 1. The lower α, the less effect the past has on the fu-

ture. This parameter has been adjusted from several experimental

results.

3.4. Indicator and State estimates

Indicators and states are estimated using the maximum a posteriori
and the minimum mean square error rules, respectively. These es-

timates could be computed from the random measure

(wt((λ
t
0)

i), (λt
0)

i)). However the estimation performance is im-

proved by computing smoothed estimates:

λ̂t = argmax
(λt)i

{
w̃t((λ

t
0)

i)
}

i=1:N
,

X̂ t =
N∑

i=1

w̃t((λ
t
0)

i)X̂
i

t,

where X̂
i

t = X̂
i

t,j for (λt)
i = sj . The smoothing importance

weights w̃t((λ
t
0)

i) are obtained as:

w̃t((λ
t
0)

i) ∝ wt−1((λ
t−1
0 )i)

|S|∑
k=1

γ̃i
k.

4. SIMULATION RESULTS

Many simulations have been conducted to validate the previous

theoretical results. This paper considers a classical navigation sce-

nario. The vehicle trajectory is simulated according to the position-

velocity model with an approximate speed of 10km/h. Satellite

orbits are generated from real data to compute the vehicle to satel-

lite rangings. These distances are then corrupted by the simulated

GPS receiver clock offset and the GPS noise (the standard devia-

tion is approximately 10 meters) to yield GPS measurements. Fi-

nally, multipath biases are added randomly on the different mea-

surements all along the trajectory. It is important to note that, at

each time instant, the number of measures affected by multipath

ensures the overall system observability: 7 GPS measurements are

still in sight during the simulation and only 3 of them can be af-

fected simultaneously by multipath. This hypothesis makes sense

since the satellites affected by NLOS propagation have low eleva-

tion angles. The change probability (appearance or disappearance

of a multipath) is set to β = 0, 03. The different simulation pa-

rameters are summarized below:

Parameters N α σa σm

Values 500 0.5 0.1 m/s2 0.1 m

The multipath biases are reinitialized to zero each time a change

has been detected. Equivalently, the kth component of m̂i
t((λ

t
0)

i)
is set to 0 when the kth component of the ith particle λi

t equals 1

(we recall here that X̂
i

t((λ
t
0)

i) = (x̂i
t((λ

t
0)

i), b̂
i

t((λ
t
0)

i), m̂i
t((λ

t
0)

i)T ).

The covariance matrix P i
t ((λt

0)
i) has also to be reinitialized as

follows:

E
(
(mt − m̂t)(mt − m̂t)

T
)

=

{
σ2

j if multipath,

0 otherwise.

The parameter σj allows to adjust the change amplitudes (σj = 10
meters in this implementation).

The following figures illustrate the performance of the algo-

rithm. Figure 1 shows typical detection probabilities P [λt =
1|Y t+∆

1 ] obtained in absence of smoothing (i.e. for ∆ = 0). The

same probabilities are plotted in figure 2 for a fixed lag ∆ = 5.
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The change instants are represented by vertical bars on these fig-

ures. Some changes cannot be detected in the absence of smooth-

ing (∆ = 0). The results are clearly better when the algorithm

uses a fixed lag (∆ = 5). Note, however, that a false detection

still occurs around the iteration 65. These results emphasize the

interest of using the fixed lag approach.
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Fig. 1. Detection Probability for ∆ = 0

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

iterations

p(
λ t=1

|y
1:

t+
L)

Fig. 2. Detection Probability for ∆ = 5

The figures 4 and 4 show the estimated multipath biases. These

biases are well estimated when the fixed lag smoothing procedure

is used, except at time 65, where a false detection has been previ-

ously noticed.
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Fig. 3. Bias Estimation in Absence of Smoothing (∆ = 0).

The last simulation compares the results obtained with a stan-

dard extended Kalman filter that takes into account multipath bi-

ases all along the simulation. The average positioning mean square

errors obtained with the extended Kalman filter and the smoothed

RBPF are depicted on figure 5. This figure shows that the particle

filter allows to improve the estimation performance.
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Fig. 4. Bias Estimation for a Fixed Lag (∆ = 5).
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Fig. 5. Positioning Estimation Error.

5. CONCLUSION

This paper studied a Rao Blackwellized Particle Filter for joint

detection and estimation of multipath biases. The proposed algo-

rithm allowed to detect the presence or absence of multipaths con-

trary to existing algorithms. The impact of the algorithm on the

position estimation accuracy should be further investigated. The

challenging problem of detecting interferences affecting GPS mea-

surements should also be addressed by using a similar approach.

6. ACKNOWLEDGMENT

The authors wish to thank A. Doucet and Jose M.Huerta for their

very helpful comments.

7. REFERENCES

[1] M. Najar, J.M. Huerta, J. Vidal, and J.A Castro, “Mobile Location with
Bias Tracking in Non-Line-of-Sight,” in Proc. ICASSP-04, Montral,
Quebec, Canada, May 2004, vol. 3, pp. 956–959.

[2] J. A. Farrell and M. Barth, The Global Positioning System and Inertial
Navigation, McGraw–Hill, New York, 1999.

[3] A. Doucet, N. de Freitas, and N. Gordon, “An introduction to se-
quential Monte Carlo methods,” in Sequential Monte Carlo methods
in practice, A. Doucet, N. de Freitas, and N. Gordon, Eds., pp. 3–14.
Springer Verlag, New York, 2001.

[4] X. Wang, R. Chen, and D. Guo, “Delayed-Pilot Sampling for Mixture
Kalman Filter with Application in Fading Channels,” IEEE Trans.
Signal Processing, vol. 50, no. 2, pp. 241–254, 2002.

[5] E. Punskaya, Sequential Monte Carlo Methods for Digital Commu-
nications, Ph.D. thesis, University of Cambridge, Cambridge, UK,
2003.

IV - 20

➡ ➠


