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ABSTRACT
This paper investigates a new method for the extraction of
spectral trajectories from nonstationary multicomponent nar-
row band signals. The main idea is to apply statistical filter-
ing so as to track frequency trajectories in the Short Term
Fourier Transform. A nonlinear observation model is de-
fined and a special particle filtering algorithm is developed.

1. INTRODUCTION

A common Signal Processing task consists of extracting
time-varying frequency information from signals. For ex-
ample, in audio signal processing, we want to track the evo-
lution of frequency components with respect to time so as
to follow the pitch of a piece of music. An additional task
can be to decompose a signal made of some time-varying
’narrow-band frequency components’ into the individual
components. Many methods have already been proposed to
solve this problem, among which ARCAP based frequency
tracking [1, 2] and Empirical Modal Decomposition [3].

In this paper, we propose to cast this problem into a sta-
tistical filtering form. Similar to a mobile object tracking
problem, we define a model for the time evolution of the
frequency and amplitude of each components. Addition-
ally, we use as observations the Short Term Fourier Trans-
form (STFT) of the signal: more precisely, assume the sig-
nal x, t = 1, 2, . . . , can be locally written as the sum of kt

stationary sine waves embedded in additive noise. The ob-
servations model is made local by considering a windowed
version xt of x, t = 1, 2, . . .:

xt[τ ] = x[t + τ − Lw/2]w[τ ] , τ = 1, . . . , Lw (1)

where w[τ ] is the symmetric window of length Lw. We as-
sume that, on the window w, the signal is locally stationary
(this is the underlying assumption of the STFT) and that it
writes as

xt[τ ] = st[τ ] + b[τ ] , τ = 1, . . . , Lw (2)

with

st[τ ] =

(
kt∑

k=1

at,k cos(2πft,kτ)

)
w[τ ] (3)

and b an additive noise.
The filtering problem consists of estimating online the

unknown parameters kt, Ft = [ft,1, . . . , ft,kt
] and At

(where At is built as Ft). Let θt =
[
Ft , At

]
. The problem

consists of estimating (kt, θt) sequentially from the obser-
vations, using a frequency/amplitude evolution model. To
solve this filtering problem, we use sequential Monte Carlo
methods (also referred to as particle filtering), which pro-
vides us with a particle approximation of the distribution
of the state p(k0:t, θ0:t|y1:t) [4] where, e.g., θ0:t denotes
[θ0, θ1, · · · , θt]. It is easy to estimate (kt, θt) from these
particles.

This paper is organized as follows: in Section 2, we
present the frequency/amplitude evolution model (transition
probability) as well as the observation probability. In Sec-
tion 3, we propose an efficient implementation of the se-
quential Monte Carlo algorithm samplers, specially designed
for this problem. In Section 4, we present some results be-
fore conclusions and directions of future research are pro-
posed.

2. A HIDDEN MARKOV MODEL FOR
FREQUENCY/AMPLITUDE TRACKING

The frequency/amplitude evolution model is a simple ran-
dom walk and transition equations are of general shape:

ut+1,k = ut,k + vt,k (4)

where vt,k is a noise and k the number of the trajectory at
time t, k = 1, . . . , kt.

2.1. Transition probabilities

In this subsection, we give explicit expressions for the tran-
sition equation of the state parameters and we precise nota-
tions.

2.1.1. Number of components kt

The number of components kt can either be kept constant
(kt+1 = kt), be increased (kt+1 = kt + 1) or be decreased
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kt = kmin kmin < kt kt = kmax

kt < kmax

Pr(kt+1 = kt − 1) 0 1/4 1/3

Pr(kt+1 = kt) 2/3 1/2 2/3

Pr(kt+1 = kt + 1) 1/3 1/4 0

Table 1. Transition probabilities for the number of compo-
nents kt

(kt+1 = kt − 1) with the probabilities given in Table 1. The
number of components ranges from kmin to kmax.

2.1.2. Frequencies transition

Using the shape of Eq. (4), the frequency transition equation
is

ft+1,k = ft,k + vf
t,k (5)

where vf
t,k is a zero-mean white Gaussian noise of variance

(σf
t,k)2. We allow this variance to change according to the

following evolution model:

(σf
t+1,k)2 = (σf

t,k)2eϕt,k with ϕt,k ∼ N (0, σ2
ϕ) (6)

2.1.3. Amplitudes transition

Similar to Eq. (4), the amplitude transition equation is

at+1,k = at,k + va
t,k (7)

where va
t,k is a zero-mean white Gaussian noise of variance

(σa
t,k)2. Again, we allow the variance to change with time

according to:

(σa
t+1,k)2 = (σa

t,k)2eαt,k with αt,k ∼ N (0, σ2
α) (8)

2.2. Observations probability (likelihood)

The observation is given by:

yt[τ ] = r
(
xt[τ ]

)
, τ = 1, . . . , Lw (9)

where xt comes from Eq. (1) and r is the magnitude of the
STFT. The observation law is:

yt[τ ] = r
(
st[τ ]

)
+ vy

t [τ ] , τ = 1, . . . , Lw (10)

where the signal st is computed from θt using Eq. (3). The
additive noise vy

t [τ ], τ = 1, . . . , Lw, is assumed i.i.d Gaus-
sian with variance (σy

t )2. Similar to the evolution model
variances, the observation model variance can change with
time, according to:

(σy
t+1)

2 = (σy
t )2eεt with εt ∼ N (0, σ2

ε ) (11)

The observation probability, or likelihood, comes di-
rectly from Eq.’s (1)-(3) and is given by:

p(yt|θt) = p(yt|st) (12)

∝ exp

(
−

(
yt − r(st)

)T(
yt − r(st)

)
2(σy

t )2

)

3. PARTICLE FILTERING ALGORITHM

Particle filtering methods are recursive algorithms which
produce, at each time t, a set of particles {θ(i)

0:t; i = 1 · · ·N}
which give us an approximation of the posterior state distri-
bution:

p̂(θ0:t|y1:t) =
1
N

N∑
i=1

δ
(θ

(i)
0:t)

(dθ0:t) (13)

Particles are drawn from the proposal distribution
q(θt|θ0:t−1, y1:t) and selected according to their weight:

ω
(i)
t =

p(yt|θt)p(θt|θt−1)
q(θt|θ0:t−1, y1:t)

(14)

The design of the proposal distribution is of paramount
importance in sequential importance sampling algorithms.
It have been shown [5] that particle filters with a proposal
distribution obtained using the Unscented Kalman Filter
(UKF) are particulary suitable if the model of observation
is not linear. In our case, the observation is the absolute
value of the STFT of the signal.

So, we propose the following implementation of the Un-
scented Particle Filter (UPF) [5], applied to our problem.

• At time t = 0
Initialization
For i = 1 · · ·N set R

(i)
0 = (σy

0 )2 and

Q
(i)
0 =

[
(σf

0,k)2 0
0 (σa

0,k)2

]
, k = 1, . . . , kt

For i = 1 · · ·N sample
(
k

(i)
0 , θ

(i)
0

) ∼ p(k0, θ0) and set

θ̄
(i)
0 = E[θ(i)

0 ]

• At time t ≥ 1
For i = 1 · · ·N
Update the number of trajectories
k

(i)
t = k

(i)
t−1 + b with b = −1, 0 or 1 with the probabili-

ties given in Table 1.
Update trajectories
i) compute sigma points

O(i)
t−1 =

[
θ̄
(i)
t−1 θ̄

(i)
t−1 ±

(√
(nθ + λ)Q(i)

t−1

)
l

]
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where

(√
(nθ + λ)Q(i)

t−1

)
l

is the lth column, l = 1 · · ·nθ,

of the matrix square root of (nθ + λ)Q(i)
t−1, nθ is the di-

mension of the state and λ is the Unscented Kalman Filter
parameter.

ii) propagate the particles using the unscented transform

O(i)
t|t−1 = O(i)

t−1

θ̄
(i)
t|t−1 =

2nθ∑
j=0

W
(m)
j O(i)

j,t|t−1

Y(i)
t|t−1 = r

(
O(i)

t|t−1

)

ȳ
(i)
t|t−1 =

2nθ∑
j=0

W
(m)
j Y(i)

j,t|t−1

where the notation r(θt) hides the step where θt is trans-
formed into st with Eq.(3) and W (m) = [2λ 1 · · · 1]/2(nθ +
λ).

iii) incorporate the new observation using the Kalman
filter equations

Pytyt
= (σy

t )2ILw
+

2nθ∑
j=0

W
(c)
j [Y(i)

j,t|t−1 − ȳ
(i)
t|t−1][Y(i)

j,t|t−1 − ȳ
(i)
t|t−1]

T

Pθtyt =
2nθ∑
j=0

W
(c)
j [O(i)

j,t|t−1 − θ̄
(i)
t|t−1][Y(i)

j,t|t−1 − ȳ
(i)
t|t−1]

T

Kt = Pθtyt
P−1

ytyt

θ̄
(i)
t = θ̄

(i)
t|t−1 + Kt(yt − ȳ

(i)
t|t−1)

P(i)
tt = Q

(i)
t−1 − KtPytyt

KT
t

iv) sample θ
(i)
t ∼ q(θ(i)

t |θ(i)
0:t−1, y1:t) = N (θ̄(i)

t ,P(i)
tt )

Update the hyperparameters
We define

β
(i)
t−1 = 2

[ · · · log(σf
t−1,k) · · · log(σa

t−1,k) · · · log(σy
t−1)

]T
and

ε
(i)
t = θ

(i)
t − θ

(i)
t−1

Then, sample the set of log-variances

β
(i)
t ∼ p(β(i)

t |β(i)
t−1, ε

(i)
t )

with

p(β(i)
t |β(i)

t−1, ε
(i)
t ) =

p(ε(i)
t |β(i)

t )p(β(i)
t |β(i)

t−1)

p(ε(i)
t |β(i)

t−1)

and update Q
(i)
t−1 and R

(i)
t−1 into Q

(i)
t and R

(i)
t using β

(i)
t .

Evaluate the importance weights

ω̃
(i)
t = p(yt|θ(i)

t )
p(θ(i)

t |θ(i)
t−1)

q(θ(i)
t |θ(i)

0:t−1, y1:t)

p(β(i)
t |β(i)

t−1)

q(β(i)
t |β(i)

t−1, ε
(i)
t )

Normalize the importance weights so that

ω
(i)
t ∝ ω̃

(i)
t ;

N∑
i=1

ω
(i)
t = 1

Selection step
Multiply/Suppress particles with high/low importance

weight respectively, to obtain N random particles with im-
portance weight 1/N

Output
The algorithm gives us an approximation of the poste-

rior distribution from which it is easy to compute statistical
estimates such as:

E[gt(θ0:t)] ≈ 1
N

N∑
i=1

gt(θ
(i)
0:t)

In our method, the function we are interested in is the
marginal conditional mean of θ0:t i.e. gt(θ0:t) = θt

4. RESULTS

We apply this particle filtering algorithm on synthetic sig-
nals and we compare the estimated frequency/amplitude com-
ponents with the ones used to synthesize the signal. An
example of this study is represented on Fig.’s 1-2-3. The
simulated signal is composed of one stationary tone at nor-
malized frequency 0.18, a first transient tone at frequency
0.3 from time sample 1 to time sample 219 and a second
one at frequency 0.27 from time sample 569 to time sam-
ple 1000, a sine-modulated component with mean normal-
ized frequency 0.4 and a linear chirp. Note that the number
of spectral components is time-varying. A Gaussian white
noise is added to the data such that the SNR is about 17 dB.
The following set of parameters was chosen: N = 250 (the
number of particles), kmin = 1, kmax = 15, σϕ = σα =
σε = 0.1 and w is a Hamming window of length 63.

In Fig. 1, we can see that both the number of compo-
nents and the frequency trajectories are estimated with good
accuracy. In part (c) of this figure, we circled three events
where the estimation of the number of trajectories seems
to be erroneous. The events in circles 1 and 2 are due to
the windowing effect, which affects both the time and fre-
quency resolutions of the spectrogram: the time events are
well localized, up to the uncertainty caused by the window
length. Event in circle 3 is not a mistake: when two trajec-
tories cross, there exists effectively only one trajectory.
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(a): spectrogram of the data
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(b): reconstructed spectrogram

100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8
(c): number of trajectories

2 1 3

Fig. 1. (a): Spectrogram of the data. The column of this
spectrogram at time t is the observation vector yt. (b): Re-
constructed spectrogram. The column of this spectrogram
at time t is given by r(θ̂t) with θ̂t =

∑N
i=1 θ

(i)
t r(θ(i)

t ). (c):
the doted line is the estimated number of trajectories and the
solid line indicates the simulated number of trajectories.
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Fig. 2. Estimated variances increase when there is a change
of number of components but the main behaviour is the de-
crease, what means that the estimation of the variance is
meaningful.

5. CONCLUSION

Estimation of instantaneous frequencies and tracking of time-
frequency components can be performed from Short Term
Fourier Transform and particle filtering. This method al-
lows birth or death of spectral trajectories. This enables
detection of events of limited duration, in audio signal pro-
cessing, for instance.
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Fig. 3. At time t, the Root Mean Square error is computed

by:

√(
yt−r(θ̂t)

)T(
yt−r(θ̂t)

)
Lw
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