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ABSTRACT

We present in this paper a density-assisted particle filter (DAPF)
algorithm for ballistic target tracking with unknown, fixed ballistic
coefficient. The proposed algorithm uses an optimized importance
function to update the particle population and then utilizes the up-
dated particles and their respective importance weights to build a
parametric approximation of the joint posterior probability density
function (pdf) of the target state and the unknown ballistic coeffi-
cient. A new set of particles is then resampled according to this
approximate pdf and propagated to the next iteration of the algo-
rithm. Simulation results confirm previous claims in the literature
that DAPFs are viable alternatives for sequential estimation in non-
linear dynamic models with unknown, static parameters.

1. INTRODUCTION

Ballistic target tracking using conventional radar measure-
ments is a difficult problem due to inherent nonlinearities
in both the target motion model and the radar observation
model that preclude the direct application of optimal linear
sequential estimators such as the Kalman filter. As an al-
ternative to linearized Kalman-type filters, Farina et al pro-
posed in [1] a sequential Monte Carlo solution to the prob-
lem of ballistic target tracking during re-entry into the at-
mosphere using a standard sampling/importance resampling
(SIR) particle filter [2]. More recently [3], an improved SIR
ballistic target tracking filter was proposed combining an
optimized measurement-based importance function [4] and
Metropolis-Hastings [5] move steps. References [1] and
[3] assumed, however, that the target ballistic coefficient
was deterministic and perfectly known to the tracking fil-
ter, which may not be realistic in practical situations. In this
paper, we consider the alternative scenario where the ballis-
tic coefficient is fixed (time-invariant), but is also random
and unknown.

Efficient sequential state estimation in nonlinear dynamic
models with unknown, static parameters is still an open prob-
lem in particle filtering theory. As pointed out in [6], the
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conventional solution of extending the state vector to in-
clude the unknown parameter vector and then applying stan-
dard SIR filtering is bound to fail with static parameters due
to the lack of ergodicity of the extended state process. A
possible solution, see [6], is to assume an artificial dynamic
evolution for the unknown parameter vector. However, such
solution has the disadvantage of treating the fixed parame-
ters as time-variant when, in reality, they are not. Recently,
Djurić et al [7] suggested the use of density-assisted particle
filters (DAPFs) as a potentially viable alternative to perform
joint sequential state and parameter estimation without ex-
plicitly introducing an artificial dynamic model for the static
parameters. In this paper, we design a modified sequential
Monte Carlo filter that combines the optimized importance
function from [3] and the density-assisted particle filtering
technique from [7]. Next, we investigate the performance of
the proposed DAPF in a realistic problem of target tracking
with an unknown (random), fixed ballistic coefficient.

The paper is divided into five sections. Section 1 is this
Introduction. In Section 2, we review the target motion and
observation models for the ballistic target tracking problem.
In Section 3, we detail the proposed DAPF tracking algo-
rithm. In Section 4, we present simulation results and com-
pare the DAPF tracker to the alternative modified artificial
parameter evolution method in [8]. Finally, we summarize
the conclusions of our work in Section 5.

2. MOTION AND OBSERVATION MODEL

Let k be a non-negative integer number and denote by ∆ the
time interval between two consecutive radar measurements.
Let also superscript T denote the transpose of a vector or
matrix. Assuming for simplicity a flat Earth, we define the
target state at instant t = k ∆ as the four-dimensional vector
sk = [xk ẋk yk ẏk]T , that collects the positions, xk and
yk, and the velocities, ẋk and ẏk, of the target in a system
of 2D cartesian coordinates (x, y). We also define the two-
dimensional observation vector zk = [rk εk]T , that collects
the measured range, rk, and elevation angle, εk, of the target
at instant t = k ∆. We model the random sequences {sk},
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k ≥ 0, and {zk}, k ≥ 1, by the nonlinear state-space model
[1, 3]

sk+1 = Ψ(sk, β) + wk (1)

zk = h(sk) + vk (2)

where β is the target ballistic coefficient, assumed time-
invariant, unknown and random with uniform distribution
in [βL, βU ]. On the other hand, {wk}k≥0 and {vk}k≥1 are
assumed to be two mutually independent, identically dis-
tributed (i.i.d.) Gaussian random sequences, also indepen-
dent of β and s0, and with zero mean and non-singular co-
variance matrices respectively

Q = q

[
Θ 0
0 Θ

]
, Θ =

[
∆3

3
∆2

2
∆2

2 ∆

]
(3)

and

R =
[

σ2
r 0
0 σ2

ε

]
(4)

where q, σ2
r and σ2

ε are positive real numbers. The nonlinear
function Ψ(.) in (1) is in turn given by

Ψ(sk, β) = Φsk + Gf(sk, β) + G
[

0
−g

]
(5)

where g denotes the gravity acceleration (assumed constant
and known), matrices Φ and G are given by

Φ =

⎡⎢⎢⎣
1 ∆ 0 0
0 1 0 0
0 0 1 ∆
0 0 0 1

⎤⎥⎥⎦ , G =

⎡⎢⎢⎣
∆2

2 0
∆ 0
0 ∆2

2
0 ∆

⎤⎥⎥⎦ (6)

and f(sk, β) denotes the aerodynamic drag force whose ex-
pression is [1]

f(sk) = −0.5
g

β
ρ(yk)

√
ẋ2

k + ẏ2
k

[
ẋk

ẏk

]
. (7)

In (7), ρ(.) is the air density which decays with the alti-
tude yk according to the exponential law described in [1, 3].
Finally, assuming that the true target elevation angle lies be-
tween 0 and π/2, the nonlinear function h(.) in (2) is writ-
ten as

h(sk) =
[ √

x2
k + y2

k

arctan( yk

xk
)

]
. (8)

3. DENSITY-ASSISTED PARTICLE FILTER
TRACKER

Let z1:k = {z1, z2, . . . , zk} be a sequence of observations.
A particle-filter strategy for joint sequential state and pa-
rameter estimation is to generate in a recursive fashion a

set of samples
{

(s(j)
k , β

(j)
k ), j = 1, . . . , Np

}
, k ≥ 0, with

associated weights
{

w
(j)
k

}
, such that the weighted aver-

age
∑Np

j=1 w
(j)
k

[
s(j)
k β

(j)
k

]T

converges (in some statistical

sense) at each instant k to the joint MMSE state and param-

eter estimate E

{
[sk β]T | z1:k

}
.

Let q(sk | s0:k−1, β0:k−1, z1:k) be a chosen proposal
probability density function (pdf), referred to as the impor-
tance function. The density-assisted particle filter (DAPF)
tracker derived in this paper, see also [7], is a modified sam-
pling/importance resampling (SIR) [2] that builds an ap-
proximate properly weighted set to represent p(sk, β | z1:k)
using the following recursive algorithm:

1. For j = 1, . . . , Np, sample s(j)
0 ∼ p(s0) and β

(j)
0 ∼

p(β).
2. Set k=1.
3. For j = 1, . . . , Np

• Draw s̃(j)
k ∼ q(sk | s(j)

0:k−1, β
(j)
0:k−1, z1:k), and make

β̃
(j)
k = β

(j)
k−1.

• Update the weights

w̃
(j)
k ∝ p(zk | s̃(j)

k ) p(s̃(j)
k | s(j)

k−1, β
(j)
k−1)

q(s̃(j)
k | s(j)

0:k−1, β
(j)
0:k−1, z1:k)

.

where the symbol ∝ denotes “proportional to” and∑
j w̃

(j)
k = 1.

End-for
4. Build a parametric approximation p̂(sk, β | z1:k) to
the true posterior pdf p(sk, β | z1:k) using the particle set{

(s̃(j)
k , β̃

(j)
k )

}
and the respective weights

{
w̃

(j)
k

}
.

5. For j = 1, . . . , Np, resample (s(j)
k , β

(j)
k ) ∼ p̂(sk, β |

z1:k).
6. Make k = k + 1 and go back to step 3.

The DAPF tracker above differs from conventional SIR
filtering applied to the extended state vector [sk β]T in the
sense that we replace standard resampling with replacement
according to the particle weights by resampling according to
the approximate parametric pdf p̂(sk, β | z1:k). As long as
the parametric approximation of the true posterior is reason-
ably accurate, the previously described algorithm implies a

natural evolution in time of the sample set
{

β
(j)
k

}
without

the severe depletion of particles that would otherwise oc-
cur, see [7], if standard resampling according to the weights
were used.
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3.1. Importance Function Design

In order to reduce particle degeneracy [2] arising from the
increase over time in the variance of the particle weights,
one should choose the optimal importance function

q(sk | s(j)
0:k−1, β

(j)
0:k−1) = p(sk | s(j)

k−1, β
(j)
k−1, zk) (9)

that minimizes [4] the variance of w̃
(j)
k conditioned on the

simulated particle trajectories and on the observations. How-
ever, a closed-form analytical expression for the optimal im-
portance function cannot be obtained in this particular ap-
plication due to the nonlinearities in both the state model in
(1) and the observation model in (2). Using a technique pro-
posed in [4], we expand then equation (2) around
Ψ(s(j)

k−1, β
(j)
k−1) and build the first-order linear approxima-

tion

zk ≈ h
[
Ψ(s(j)

k−1, β
(j)
k−1)

]
+ H(j)

k

[
sk − Ψ(s(j)

k−1, β
(j)
k−1)

]
+ vk, (10)

where H(j)
k = ∇h(s) evaluated at s = Ψ(s(j)

k−1, β
(j)
k−1), and

∇h(s) =

⎡⎣ s[1]√
s2[1]+s2[3]

0 s[3]√
s2[1]+s2[3]

0
−s[3]

s2[1]+s2[3] 0 s[1]
s2[1]+s2[3] 0

⎤⎦ . (11)

Let N (s − a,P) denote the multivariable normal function
of argument s, mean a and covariance matrix P. Assuming
the linearized observation model in (11), it is possible to
show that p(sk | s(j)

k−1, β
(j)
k−1, zk) may be approximated by

N (sk − m(j)
k , Σ(j)

k ) where

Σ(j)
k =

[
Q−1 + (H(j)

k )T R−1(H(j)
k )

]−1

(12)

m(j)
k = (Σ(j)

k )
{
Q−1Ψ(s(j)

k−1, β
(j)
k−1)

+ (H(j)
k )T R−1

[
zk − h(Ψ(s(j)

k−1, β
(j)
k−1))

+ H(j)
k Ψ(s(j)

k−1, β
(j)
k−1)

]}
. (13)

3.2. Parametric Approximation of the Posterior PDF

For simplicity, we follow the suggestion in [7] and use the
parametric approximation

p̂(sk, β | z1:k) ≈ N (sk − µ
k|β ,Pk|β)B(β; λ1,k, λ2,k)

(14)
where B(β; λ1,k, λ2,k) denotes the shifted Beta pdf defined
in the interval [βL, βU ] with shape parameters λ1,k and λ2,k.

Let α̃(j)
k =

[
(s̃(j)

k )T β̃
(j)
k

]T

, j = 1, . . . , Np, and compute at

instant k the weighted sample mean, µ
k
, and the weighted

sample covariance, Pk, given by

µ
k

=
Np∑
j=1

w̃
(j)
k α̃

(j)
k =

[
(µ

s,k
)T µβ,k

]T

(15)

Pk =
Np∑
j=1

w̃
(j)
k (α̃(j)

k − µ
k
)(α̃(j)

k − µ
k
)T

=
[

Pss,k Psβ,k

PT
sβ,k σ2

β,k

]
. (16)

For Np sufficiently large, we can estimate the parameters
λ1,k and λ2,k directly from µβ,k and σ2

β,k by solving the
implicit equations (adapted from [7])

µβ,k − βL

(βU − βL)
=

λ1,k

λ1,k + λ2,k
(17)

σ2
β,k

(βU − βL)2
=

λ1,k λ2,k

(λ1,k + λ2,k)2 (λ1,k + λ2,k + 1)
.(18)

In the sequel, we make the parameter vector µ
k|β equal to

the linear least squares estimate of sk given β and z1:k, i.e.,

µ
k|β = µ

s,k
+ Psβ,kσ−2

β,k(β − µβ,k) . (19)

The corresponding conditional covariance matrix is then

Pk|β = Pss,k − Psβ,k (σ−2
β,k) PT

sβ,k . (20)

4. SIMULATION RESULTS

We simulated the state model in (1) with parameters g =
9.8m/s2, q = 5, ∆ = 2 s, βL = 35000kg.m−1.s−2,
and βU = 45000kg.m−1.s−2. The observation model in
(2) was simulated assuming σr = 75m, and σε = 0.017
rad. The initial state s0 was specified as a Gaussian random
vector with mean m0 = [232000m 2290 cos(190o)m/s
88000m 2290 sin(190o)m/s ] and diagonal covariance ma-
trix Σ0 with Σ0(1, 1) = Σ0(3, 3) = 10002 m2, and Σ0(2, 2) =
Σ0(4, 4) = 202m2.s−2. The simulated target is tracked
over 50 time steps using the DAPF tracker described in Sec-
tion 3 with Np = 6000 particles.

For comparison purposes, we also implemented the state-
of-the-art joint state/parameter estimator proposed by Liu
and West in [8]. The filter in [8] is a modified auxiliary
particle filter (APF) [9] that assumes an artificial evolution
for the static model parameters which may in turn be re-
interpreted as equivalent to a kernel smoothing method with
shrinkage, see [8] for details. Figures 1(a) and (b) show the
root-mean square error (RMSE) curves for the target posi-
tion estimates obtained by the DAPF and the Liu-West filter
(LWF) respectively in the x and y coordinates. The RMSE
curves were estimated from 100 independent Monte Carlo
runs. As a global reference for performance, we also plot in
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Fig. 1. RMS position estimation error for the DAPF tracker
and the Liu-West filter with σr = 75m and σẋ0 = σẏ0 =
20m/s; (a) x coordinate, (b) y coordinate.

Figures 1(a) and (b) the square-root of the posterior Cramér-
Rao lower bound (PCRLB) that would have been achieved
by the ideal (optimal) nonlinear filter if the ballistic coef-
ficient were perfectly known. The PCRLB was computed
using a Monte Carlo approximation of the recursive algo-
rithm in [10]. The curves in Figure 1 show that, despite the
use of a rough parametric approximation to the true poste-
rior pdf, the performance of the proposed DAPF tracker is
identical within the margin of error of the simulations to the
performance of the alternative Liu-West filter.

5. CONCLUSIONS

We presented in this paper a modified sequential Monte
Carlo filter for target tracking with unknown, fixed ballistic
coefficient. The proposed filter jointly estimates the hidden
dynamic target state and the unknown, static ballistic coeffi-
cient combining the density-assisted particle filtering tech-
nique in [7] with a locally optimized measurement-based
importance function. Empirical evidence from our simula-
tion results seem to confirm the claim in [7] that density-
assisted particle filters (DAPFs) are a potentially viable al-
ternative for combined sequential estimation of dynamic stat-
es and static parameters. Future work will include a detailed
theoretical analysis of the convergence properties of DAPFs

and the derivation of optimal parametric approximations to
the true posterior pdf to ensure good convergence behavior.
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