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ABSTRACT

In recent years there has been great interest in particle filtering
as a sequential Bayesian estimation method for dynamic systems.
In this paper, the problem of detection in flat fading channels in the
presence of Autoregressive Conditional Heteroscedasticity (ARCH)
noise is addressed. The Auxiliary particle filtering (APF) algo-
rithm is presented for the estimation of transmitted sequence and
ARCH noise variance. We introduce the ARCH process for the pur-
pose of noise modelling. The applicability of the model is based
on a variance change over time compatible to a large extent with
non-stationarity and non-Gaussianity of wireless fading channels.
We show through simulation the superiority of the proposed algo-
rithm over the bootstrap particle filter (PF) even in the presence
of the new noise model; i.e., the ARCH process.

1. INTRODUCTION

The ever-increasing movement towards the world of wire-
less communication encourages us to find more efficient
and robust detection algorithms at the receiver. The next
generation wireless technology is going to operate at higher
bit rates, and in such circumstances the multipath fading
is a serious problem specially for indoor communication.
This fact and the need for high bit rates makes us utilize
more robust and efficient algorithms which also give us the
real time processing capability. Optimal or Bayesian fil-
tering [1] has found a variety of applications for nonlinear
and non Gaussian problems. Bayesian filtering addresses
the problem of estimating recursively in time the posteriori
probability of a hidden state space variable from an a priori
probability distribution function. To achieve this goal a set
of simulation-based methods known as Sequential Monte
Carlo SMC methods are used [1, 3]. Particle filtering as
a SMC method approximates the posteriori distribution of
a desired state variable by a set of particles with associ-
ated probability weights allowing estimation of the posteri-
ori distribution recursively in time. The particle filtering al-
gorithm is an attractive tool for estimating the posteriori dis-
tribution given increased computational powers in today’s

technology. Auxiliary particle filtering [2] attempts to re-
duce the variability of the importance weights at time t − 1
by performing particle filtering in a higher dimension. In
other words by changing the sampling mechanism of PF a
more efficient algorithm is obtained [2]. Non-Gaussian im-
pulsive noise has attracted considerable attention from re-
searchers in various fields of applied signal processing due
to their close fit to a variety of underlying physical pro-
cesses. Such is the case in communication channels for
additive ambient noise and noises being generated from dif-
ferent natural and man made sources and their propagation
effects to the receiver. Besides, in wireless channels fac-
tors such as the birth and death of users, electromagnetic
interferences, co-channel and co-site interference may vary
dynamically in time and space; i.e., they are non-stationary
and non-Gaussian characteristics. Therefore it is a more re-
alistic assumption to consider the volatility nature of the
received signal; i.e., we assume time-varying variance for
additive noise. In the last decade, after the seminal work
by Engle [7], there has been a growing interest in time se-
ries models with time varying variance or volatility. These
models have found a great application in non-stationary and
non-Gaussian financial time series analysis. Autoregres-
sive Conditional Heteroscedasticity (ARCH) [7] is a time se-
ries modelling technique which introduces heteroscedastic-
ity. A series is said to be heteroscedastic if its variance
changes over time. ARCH models account for two main
characteristics, excess kurtosis (heavy tail probability distri-
bution) and volatility clustering (large changes tend to fol-
low large changes and small changes tend to follow small
ones). Therefore, ARCH process can successfully model
non-stationarity and non Gaussianity of wireless channel
noise [4]. In addition, it is clear that the probability distribu-
tion function of ARCH noise exhibits heavier tails than those
of the standard normal distribution compatible to a large ex-
tent with impulsive noise which is a commonly used model
for additive noise in wireless channels. In this paper as an
application to improve, and make more suitable APF algo-
rithm in non-Gaussian, and non stationary environment; i.e.,
a realistic scenario for a wireless communication channel,
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we consider the problem of detection in ARCH noise whose
non constant variance is unknown . This paper is organized
as follows: Section 2 is devoted to model presentation and
mathematical formulation of the fading channel along with
non-Gaussian ARCH noise. In section 3 an overview of par-
ticle filtering is presented first and then auxiliary particle fil-
tering algorithm is proposed. The new detection in flat fad-
ing channel in the presence of ARCH(1) noise is discussed
in section 4. Section 5 contains simulation results in pres-
ence of ARCH(1) noise. In section 6 concluding remarks are
provided.

2. SYSTEM MODEL AND PROBLEM
FORMULATION

In this section we present the model for the wireless fading
channel and ARCH noise. Given the information from the
channel denoted by Ft−1 we model the additive noise of
the channel by εt, where the dependence of this noise and
the information from the channel, i.e., Ft−1, is modelled by
a Gaussian random variable. Let εt be a real valued discrete
time stochastic process and let Ft−1 be the set of all infor-
mation available through the observed data up to time t−1.
Then ARCH(p) is given by [7]:

εt|Ft−1 ∼ N (0, σ2
t ) (1)

σ2
t = α0 +

p∑
i=1

αiε
2
t−i (2)

where,

α0 > 0 , αi ≥ 0 , i = 1, ..., p, p > 0

(3)

For p = 0, εt reduces to white noise. In order to show the
impulsive nature of the ARCH process, one can obtain the
second and fourth moments of the ARCH(1) process as

σ2
εt

= E(ε2
t ) =

α0

1 − α1

E(ε4
t ) = 3

(
α2

0

1 − α1

)(
1 + α1

1 − 3α2
1

)

The unconditional kurtosis of εt becomes:

E(ε4
t )

σ2
εt

= 3
1 − α2

1

1 − 3α2
1

> 3

It can be seen that the tail distribution of εt is heavier than
that of a normal distribution which shows suitable mod-
elling for the impulsive nature of wireless noise. We now
consider a wireless communication channel where dt de-
notes multiplicative fading disturbance resulting from the

multipath phenomenon, and εt as ARCH(1) additive noise.
Therefore the observed signal can be shown as

yt = dtst + εt, (4)

where st and yt are modulated and observation signals, re-
spectively. Suppose dt to be Rayleigh distributed; i.e., flat
fading channel and modelled by an ARMA(r,r) [6].

dt = a
T dt−1:t−p + b

T υt−1:t−p

where υt ∼ Nc(0, 1) is a complex white Gaussian noise
with identically independently distributed zero-mean real
and imaginary parts. Filter parameters a and b both are
(r+1)×1 vectors, and are known for a determined Doppler
frequency and symbol rate. In order to represent the prob-
lem in state space framework we write the ARCH variance
in the form shown below

σ2
t = α0 + α1σ

2
t−1ut

εt = σtzt

where ut = z2
t−1, zt ∼ N (0, 1). Now, we can develop

the whole problem in a State Space (SS) framework of the
following form

xt = Hxt−1 + Gυt

σ2
t = α0 + α1σ

2
t−1ut

yt = Ftxt + σtzt

where ut is independent from zt and x is a (r + 1)× 1 state
vector. The matrix H has dimensions (r + 1)× (r + 1) and
is constructed from the coefficients of the ARMA process as
follows

H =

⎡
⎢⎢⎢⎢⎢⎣

a1 a2 · · · ar 0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

... 0
0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎦

and Ft = stb
T , G = [1, 0 · · · , 0]T with dimensions (r +

1) × 1. The model parameters of ARCH(1) process; i.e., α0

and α1 are assumed known in our analysis. However, in
general cases such as blind detection, they can be estimated
by maximum likelihood method. More accurate results can
be obtained if they are estimated in particle filtering frame-
work.

3. PARTICLE FILTERING

Consider a dynamic state space model of the following form

xt = Ht(xt−1, υt)

yt = Ft(xt, εt)
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where xt is the latent state variable and unknown to us, υt

and εt are state noise and observation noise respectively.
In general Ht(x, υ) and Ft(x, ε) are nonlinear functions of
the state and noise inputs.Given observation yt, particle fil-
ters recursively in time approximate the random variable
xt|Ft = (y1, ..., yt)

′ by a set of particles x
(i)
t , i = 1, ..., N ,

with probability masses w
(i)
t , i = 1, ..., N . In particular, if

the particles {x(i)
0:t−1, w

(i)
0:t−1} are distributed approximately

according to p (x1:t−1|y1:t−1), then one can update the im-
portance weights as [5]

w
(i)
t = w

(i)
t−1

p (yt|xt
(i))p (xt

(i)|x
(i)
t−1)

q(xt
(i)|x

(i)
0:t−1, y1:t)

(5)

where q(xt
(i)|x

(i)
0:t−1, y1:t) is known as proposal distribu-

tion. If posteriori distribution is used as a proposal distri-
bution q(xt

(i)|x
(i)
0:t−1, y1:t) = p(xt

(i)|x
(i)
0:t−1, y1:t), then im-

portance weights can be updated as follows [5]

w
(i)
t = w

(i)
t−1p (yt|x

(i)
0:t−1, y0:t−1). (6)

On the other hand if the prior distribution q(xt
(i)|x

(i)
0:t−1, y1:t) =

p(xt
(i)|x

(i)
t−1) is chosen as the proposal distribution, then the

weight updating equation becomes

w
(i)
t = w

(i)
t−1p (yt|x

(i)
0:t, y0:t−1) (7)

It is clear that the likelihood function p (yt|x
(i)
0:t, y0:t−1) in

case of linear state space and Gaussian noise can be com-
puted using Kalman filtering. Once the weights are updated,
in order to prevent from degeneracy, a resampling step must
be performed. In resampling step particles with low associ-
ated weights are discarded and particles with high weights
are multiplied. In order to improve the efficiency of particle
filtering some new algorithms have been suggested [2]. As
mentioned, APF tries to reduce the variability of the impor-
tance weights by resampling the particles at time t−1 with
probability close to p(xt−1|y1:t). In other words, in auxil-
iary particle filtering a mechanism of adaptation is added to
standard particle filtering. In practice, running time for the
APF algorithm is a little bit more than for the standard par-
ticle filtering. That’s because we are modifying the weights
of the past to reduce the weights’ variations. Assume that
θt is the desired state vector at time t to be estimated by
APF algorithm. First we make a prediction θ̂

(i)
t of the past

trajectories θ
(i)
t by means of the mode, then resampling ac-

cording to their associated weights are performed. Finally,
the algorithm proceeds as in basic particle filter. Thus, for
t > 1 the APF algorithm can be written as follows

• Predict the state variable by the mode of θ
(i)
t−1 to ob-

tain θ̂
(i)
t , i = 1, · · · , N

• Compute p(yt|y1:t−1, θ̂
(i)
1:t) using Kalman filtering.

• w
(i)
t ∝ w

(i)
t−1p(yt|y1:t−1, θ̂

(i)
1:t),

∑N

i=1 w
(i)
t = 1, i =

1, · · · , N

• Resample θ
(i)
t−1 with respect to the probabilities w

(i)
t

• θ
(i)
t ∝ q(θ

(i)
t |θ

(i)
0:t−1, y0:t)

• w
(i)
t ∝

p(yt|y1:t−1,θ
(i)
1:t)

p(yt|y1:t−1,θ̂
(i)
1:t)

• Normalize the new weights,
∑N

i=1 w
(i)
t = 1, i = 1, · · · , N

Next, we introduce the new auxiliary particle filtering strat-
egy in presence of a possible non-Gaussian and/or non-stationary
interference and noise.

4. AUXILIARY PARTICLE FILTERING IN THE
COMMUNICATION CHANNEL

Assume that symbols st are transmitted from a Markovian
source with transition probability function p (st|st−1). In
the state space model we presented for the problem of de-
tection of which the transmitted symbols st, noise variance
σ2

t and the latent variable xt are unknown to us. In order to
achieve better estimation of desired parameters in particle
filtering it is important to marginalize out undesired param-
eters. Therefore, marginalizing out the latent variable xt

to reduce importance weights variance, we can define the
state variable to be estimated as θt = (st, σ

2
t ). The impor-

tance function from which one has to generate samples of
the above mentioned state variable is

q (θt|θ
(i)
0:t−1, y0:t) ∝ p(yt|θt, θ

(i)
0:t−1, y0:t−1)

× p (σ2
t |σ

2
t−1)p (st|st−1) (8)

Assuming ARCH(1)and by referring to (2), one can see that
the distribution of noise variance p (σ2

t |σ
2
t−1) is related to

χ2(1) and can be calculated analytically as

p (σ2
t |σ

2
t−1) = [2πα1ht−1(ht − α0)]

− 1
2 exp

(
−

ht − α0

2α1ht−1

)
(9)

In addition the transition distribution p (st|st−1) is known
to us and the likelihood function p(yt|θt, θ

(i)
0:t−1, y0:t−1) is

normal with mean and covariance can be calculated by Kalman
filtering. During the algorithm implementation particles are
sampled from (8) and their associated weights are calcu-
lated from the likelihood function. Once the particles are
obtained MAP estimator is used to estimate st i.e.,

ŝt = arg max p (st|y0:t) (10)

and,

p (st|y0:t) =

N∑
i=1

w
(i)
t δ(s

(i)
t ) (11)
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where δ(.) is dirac delta function.
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Fig. 1. APF and PF algorithms in additive ARCH(1) noise
and fdT = .05 fading characteristic
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Fig. 2. Performance of APF algorithm in ARCH(1) and
Gaussian noise

5. SIMULATION

Bit Error Rate (BER) simulation results are presented in this
section. An ARMA(2) model with complex Gaussian noise
input is used for simulating fading disturbance. For addi-
tive noise ARCH(1) is chosen. The number of particles is
N = 500. Both PF and APF algorithms are applied to
a BPSK modulated signal. Figure (1) illustrates the result
for fdT = 0.05 fading characteristic and additive ARCH(1)
noise. One can see the effectiveness and the superiority
of APF over particle filtering, this is expected because of
the fact that in APF the effect of observations is included.
In other words by adding a forecast step to PF algorithm
we have the possibility of updating weights according to
the probabilities obtained from this forecast. Figure (2)

shows the performance evaluation of APF in the presence
of both additive ARCH(1) noise and Gaussian noise with
fdT = 0.02 fading characteristic. We see that the APF algo-
rithm is doing well and is still robust in case of ARCH noise,
keeping the BER in a reasonable range. Hence, the intro-
duced auxiliary particle filtering method can be utilized in a
more realistic wireless channel environment.

6. CONCLUSION

In this paper, we presented an auxiliary particle filtering
scheme for detection in wireless fading channels. ARCH
noise with the characteristic of having changing variance
over time is introduced as a more realistic assumption for
non-Gaussian/non stationary wireless channels in conjunc-
tion with the introduced auxiliary particle filtering. The APF
algorithm is presented for the introduced model in case of
unknown time-varying variance. The proposed algorithm
was applied to ARCH(1) noise and its efficiency and superi-
ority over standard particle filter is verified through simula-
tion results.
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