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ABSTRACT

The mutual information of a multiple-input multiple-output

(MIMO) system with co-channel interference is considered.

Perfect channel information is assumed to be available to

the receiver, but the transmitter has no channel information.

It is theoretically proved that the worst interference condi-

tion is when the total power is equally distributed among all

available interfering antennas. Moreover, equal-power in-

terferers give worse performance than unequal-power inter-

ferers, and a smaller number of interferers each with larger

power degrades performance less than a larger number of in-

terferers each with lower power. Finally, it is shown that, for

asymptotically large interference, when the number of in-

terfering antennas NI is smaller than the number of receive

antennas NR, the system is equivalent to a reduced MIMO

system with NR − NI receive antennas. When NI ≥ NR,

the mutual information approaches zero as interference be-

comes asymptotically large.

1. INTRODUCTION

In recent years multiple-input multiple-output (MIMO) sys-

tems have attracted great attention. MIMO systems have

shown great potential for providing high spectral efficiency

in isolated, single user, wireless links without interference

[1]. There has also been some research on MIMO chan-

nels with co-channel interference [2]-[6]. In particular, [2]

provided a closed-form solution for the capacity in the limit

of a large number of antennas, including the case with in-

terference. In [3], MIMO capacity with interference was

analyzed in the low-power regime. In [4], the behavior of

the capacity with varying number of interferers was stud-

ied through simulations. In this paper, we focus on the

mutual information of MIMO systems with co-channel in-

terference which use single-user detection. Our goal is to
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provide some insight on how interference affects a MIMO

system and what kind of interference environment is more

preferable (or undesirable) through theoretical analysis. In

Section 2, the system model is introduced. Section 3 gives

the analysis of the ergodic mutual information under differ-

ent interference conditions which include considering a dif-

ferent number of interferers and different power allocation

among the interferers. Then in Section 4, the asymptotical

analysis is provided for systems with large interference. Fi-

nally, Section 5 gives the conclusion.

2. SYSTEM MODEL

We consider a MIMO system with interference, where the

desired user employs NT transmit antennas and NR receive

antennas, and suffers from co-channel interference from other

users. Initially we assume that there are totally K interfer-

ers, and the ith interferer has Mi transmit antennas. This is

equivalent to a system with a single interferer which has to-

tally
∑K

i=1 Mi antennas and the appropriate covariance ma-

trix for the interfering signal. Therefore, throughout the fol-

lowing discussion, a single interferer with totally NI trans-

mit antennas is assumed. Note that similar observations

were also made in [2][3]. Under this assumption, the re-

ceived complex baseband signal vector (NR × 1) of the de-

sired user is given by

y =
√

ρHx +
√

ηGxI + n, (1)

where H (NR × NT ) denotes the channel matrix for the

desired signal, G (NR × NI ) is the channel matrix for the

interfering signal from the nominal NI -antenna interferer,

and n (NR × 1) is the noise vector. We assume H, G
and n all have independent and identically distributed (i.i.d.)

complex Gaussian entries with zero mean and unit variance.

Both the desired signal x (NT × 1) and the interfering sig-

nal xI (NI × 1) are assumed to be complex Gaussian dis-

tributed with zero mean, with the covariance matrices Q and

P satisfying tr(Q) = 1 and tr(P) = 1, respectively. There-
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fore, the signal-to-noise ratio (SNR) is ρ, and η is the total

interference-to-noise ratio (INR).

The covariance matrix of the interference-plus-noise con-

ditioned on G is R = INR
+ ηGPG†. In this paper, we

assume that the receiver knows H and R, but the transmitter

does not know H or R. We further assume that the receiver

always performs single-user detection.

Based on these assumptions, the instantaneous mutual

information conditioned on H and G is given by

C = log2 det
(
INR

+ ρHQH†R−1
)
. (2)

Therefore, the ergodic mutual information is given by

E{C} = EH,G

{
log2 det

(
INR

+ ρHQH†R−1
)}

= EG {S(G)} , (3)

where S(G) ∆= EH

{
log2 det

(
I + ρHQH†R−1

)}
.

Given the fact that S(G) is a concave function with re-

spect to Q, we can prove the optimum Q to maximize S(G)
for a fixed G is given by Qopt = 1

NT
INT

, by following ar-

guments similar as in [1]. This means that Qopt is also op-

timum in the sense that it maximizes E{C}. However, all

the discussions in this paper hold for any Q.

3. DIFFERENT INTERFERING CONDITIONS

In this section, we study the ergodic mutual information

E{C} under different interfering conditions. Since differ-

ent interfering conditions are fully characterized by the change

in the covariance matrix P, we explicitly express the instan-

taneous mutual information in (2) as a function of P:

f(P) = log2 det
(
I + ρHQH† (

I + ηGPG†)−1
)

. (4)

Then E{C} = E{f(P)}. Here P ∈ Φ, where Φ is the set

of positive semi-definite matrices with unit trace.

Lemma 1 The ergodic mutual information E{C} is a con-
vex function with respect to P.

This lemma follows from the fact that f(P) is a convex

function of P. The detailed proof is omitted here.

Theorem 1 The ergodic mutual information E{C} is min-
imized by P = 1

NI
INI

.

Proof: Firstly, for any P, the diagonal matrix consisting of

the eigenvalues of P gives the same ergodic mutual infor-

mation as P. So we only need to consider diagonal matri-

ces.

Then, given any non-negative diagonal P, we consider

PΠ = ΠPΠ† for any possible permutation matrix Π. Due

to the symmetry of our model with respect to the different

antennas, we have E{f(PΠ)} = E{f(P)}. Further we

define P̂ = 1
NI !

∑
Π PΠ = 1

NI
INI

. According to Lemma 1,

E{f(P)} is a convex function of P. Thus E{f(P̂)} ≤
1

NI !

∑
Π E{f(PΠ)} = E{f(P)}. This means that P̂ =

1
NI

INI
minimizes E{C}. �

Theorem 1 states that when the power is equally dis-

tributed among all the interfering antennas, this is the worst

interfering condition. From the proof above, we know that

only diagonal matrices need to be considered for P. There-

fore, P is assumed to be diagonal in the remainder of this

paper. Based directly on the proof of Theorem 1, we have

the following theorem on the effect of different power allo-

cation among the interfering antennas.

Theorem 2 Given the same number of interfering anten-
nas, equal power distribution among these antennas gives
the worst performance in terms of ergodic mutual informa-
tion.

Next we study how the number of interfering antennas

affects the ergodic mutual information. Equal power dis-

tribution among all the interfering antennas employed is

assumed here. In [4], simulation results showed that, for

a fixed total interference power, a small number of large

power interferers provides better performance than a large

number of small power interferers in terms of outage capac-

ity. The following theorem suggests a similar conclusion,

but from the view of the ergodic mutual information.

Theorem 3 Given a fixed total interference power, and as-
suming the power is equally distributed over all the inter-
fering antennas employed, a smaller number of interfering
antennas gives better performance in terms of ergodic mu-
tual information.

Proof: Without loss of generality, here we show that the

case when NI interfering antennas are present gives lower

ergodic mutual information than the case when M < NI

interfering antennas are present. The two cases of inter-

est correspond to the covariance matrices of P1 = 1
NI

INI

and P2 = 1
M diag{1, · · · , 1, 0, · · · , 0} (with M 1’s), respec-

tively. First we define a set Ψ, which includes all the di-

agonal matrices with M 1’s scaled by 1
M (unit trace). The

total number of elements in Ψ is
(
NI

M

)
. Due the symme-

try with respect to the different antennas, any matrix in Ψ
gives the same performance as P2. Further, the average of

all the matrices in Ψ equals P1. Therefore, by applying the

convexity of the function E{f(P)}, we have E{f(P1)} ≤
E{f(P2)}, that is, P1 gives worse performance than P2.

�

Theorem 2 and 3 tell us that, given the total interfer-

ence power, it is more favorable to have less number of in-

terfering antennas and to have power unequally distributed

among these antennas.
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4. ASYMPTOTICALLY LARGE INTERFERENCE

In this section, we investigate how the ergodic mutual in-

formation E{C} changes with the number of interfering

antennas NI for asymptotically large interference, i.e., as

η → ∞. Again we only consider diagonal P. Moreover,

since P with some zero diagonal entries actually means less

interfering antennas, i.e., a smaller NI , we restrict the dis-

cussions to P with positive diagonal entries.

We focus on the instantaneous mutual information C in

(2). Note that R is a deterministic matrix when conditioned

on G. By eigenvalue decomposition, we have R = UΛU†,

where U is unitary and Λ is diagonal. Then

C = log2 det
(
INR

+ ρHQH†U†Λ−1U
)

(5)

= log2 det
(
INR

+ ρΛ−1/2H̃QH̃†Λ−1/2
)

, (6)

where H̃ = UH has the same distribution as H because

U is unitary. To obtain (6), we used the identity det(I +
BC) = det(I + CB).

Let A = GPG†, then R = INR
+ ηA. Since G

has i.i.d. entries, A has min{NI , NR} nonzero eigenval-

ues with probability 1. We consider two cases separately,

NI < NR and NI ≥ NR, and have the following theorems.

Theorem 4 When NI < NR, a MIMO system with NT

transmit antennas, NR receive antennas, and an NI -antenna
interferer is statistically equivalent to a MIMO system with
NT transmit antennas and (NR −NI) receive antennas for
asymptotically large INR.

Proof: When NI < NR, A has NI nonzero eigenval-

ues with probability 1, denoted as e1, e2, · · · , eNI
in non-

increasing order. Let (λ1, · · · , λNR
) denote the eigenvalues,

in non-increasing order, of R = INR
+ ηA so that

λi =
{

1 + η ei, 1 ≤ i ≤ NI

1, NI < i ≤ NR
. (7)

As η → ∞, λi → ∞ for 1 ≤ i ≤ NI , which means that

Λ−1/2 → diag(0, · · · , 0, 1, · · · , 1) (with NI zeros). Further,

we let

H̃ =

⎡
⎢⎢⎢⎣

h1

h2

...

hNR

⎤
⎥⎥⎥⎦ , (8)

where hi is a 1 × NT row vector. Then for η → ∞,

Λ−1/2H̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

0
hNI+1

...

hNR

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (9)

If we define

Ĥ =

⎡
⎢⎣

hNI+1

...

hNR

⎤
⎥⎦ , (10)

then

Λ−1/2H̃QH̃†Λ−1/2 =
[

0 0
0 ĤQĤ†

]
, (11)

It follows that

det
(
INR

+ ρΛ−1/2H̃QH̃†Λ−1/2
)

= det
[

INI
0

0 I(NR−NI) + ρĤQĤ†

]
(12)

= det
(
I(NR−NI) + ρĤQĤ†

)
. (13)

By combining (6) and (13), we have

C = log2 det
(
I(NR−NI) + ρĤQĤ†

)
. (14)

Since Ĥ is an (NR − NI) × NT matrix with i.i.d. compo-

nents, (14) is basically the instantaneous mutual information

of a MIMO channel with NT transmit and (NR − NI) re-

ceive antennas. Moreover, since the distribution of Ĥ does

not depend on G, we conclude that the system of interest re-

duces to a MIMO channel with NT transmit and (NR−NI)
receive antennas in the statistical sense. More specifically,

this means that Theorem 4 holds in the sense of the dis-

tribution of the instantaneous mutual information, ergodic

mutual information, and any related performance measures

including the cumulative distribution functions and outage

performance. This completes the proof. �

Theorem 5 When NI ≥ NR, the instantaneous mutual
information of a MIMO system with NT transmit anten-
nas, NR receive antennas, and an NI -antenna interferer
approaches zero for asymptotically large INR.

Proof: When NI ≥ NR, A is full rank and has NR

nonzero eigenvalues with probability 1. As η → ∞, λi →
∞ for all i, which means that Λ−1 → 0. It follows that the

instantaneous mutual information C → 0 with probability

1. �

Now we provide some Monte Carlo simulation results

to support Theorem 4 and 5. We consider a MIMO system

with 4 transmit and 4 receive antennas. Fig. 1 and 2 give

the ergodic mutual information for the cases NI < NR and

NI ≥ NR, respectively, when SNR = 10 dB. As seen from

the curves, when NI = 2 and NI = 3, the ergodic mutual

information approaches that of a 4 × 2 and 4 × 1 MIMO

system, respectively, as INR increases. When NI ≥ NR,

III - 1155

➡ ➡



0 5 10 15 20 25 30 35 40
3

4

5

6

7

8

9

10

total INR (dB)

E
rg

od
ic

 m
ut

ua
l i

nf
or

m
at

io
n 

(b
/s

/H
z)

N
I
 = 2

4x2 MIMO
N

I
 = 3

4x1 MIMO

Fig. 1. Ergodic mutual information for NT = NR = 4 and

SNR = 10 dB when NI < NR.

the ergodic mutual information approaches zero. These ob-

servations agree perfectly with the theorems.

By following similar arguments, the conclusions in The-

orem 4 and 5 can also be extended to the case when the

transmitter exploits knowledge of H and R.

Theorem 4 and 5 also agree with some observations in

[2]. Based on the analysis of systems with an asymptotically

large number of antennas, one observation in [2] was, once

the number of the interfering antennas exceeds the num-

ber of receive antennas, the high-SNR performance is deter-

mined mostly by SIR. Both our results and the observations

in [2] can be explained using the concept of the degrees of

freedom. In general, the receiver needs to distribute the to-

tal degrees of freedom NR between interference suppres-

sion and signal detection. In our case, since the interference

becomes asymptotically large, it is preferable to use enough

degrees of freedom to suppress the interference first, which

results in a reduced system with less receive antennas when

NI < NR. When NI ≥ NR, the receiver no longer has ex-

tra degrees of freedom for signal detection after interference

suppression. Therefore, the capacity approaches zero.

5. CONCLUSION

In this paper, we study the impact of co-channel interference

on a MIMO system with theoretical analysis. We proved

that, in terms of ergodic mutual information, it is preferable

to have fewer interferers with power unevenly distributed

among the interferers. This can also be interpreted spa-

tially: it is more favorable to have the interference dominate

only a few dimensions, rather than to have the interference

evenly spread over all dimensions. The asymptotic analy-

sis showed that as INR approaches infinity, a MIMO system
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Fig. 2. Ergodic mutual information for NT = NR = 4 and

SNR = 10 dB when NI ≥ NR.

with interference can be viewed as a reduced MIMO sys-

tem with fewer receive antennas, and this reduced system

deteriorates when NI ≥ NR. This suggests that one ex-

tra receive antenna is capable of suppressing one infinitely

strong single-antenna interfering signal.
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