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ABSTRACT

The problem of estimating and predicting the Gramian of
a matrix (with rather general structure) of correlated com-
plex Gaussian random variables is addressed. We propose
its conditional mean estimator as the optimum Bayesian es-
timator for a quadratic risk function and present its mean
square error (MSE) performance analysis. Numerical re-
sults for the example of linear pre-equalization in a wireless
communications application show a significantly improved
performance of the novel estimator compared to known ap-
proaches.

1. INTRODUCTION

Channel estimation based on training symbols is a key com-
ponent in many communication systems. Very often the es-
timated channel parameters are not required themselves, but
a non-linear transformation of them, e.g. channel power for
adaptive modulation [1] or the Gramian of a block Toeplitz
matrix in pre-equalization or equalizer design [2, 3]. Usu-
ally the properties of this non-linear transformation are not
exploited for channel estimation, although the probability
distribution of the parameters is changed significantly by
a non-linear transformation. Bayesian estimators, which
make use of this a priori information, can be improved sig-
nificantly, when taking into account the transformation of
the estimates, which is performed by the application.

To motivate the problem statement (Sec. 3), we describe
a linear pre-equalizer in a multi-user system based on per-
fect channel knowledge [2, 3] as an application of our re-
sults in communications (Sec. 2). Here, the optimized fil-
ter depends on the Gramian of a block Toeplitz matrix of
the channel coefficients. In a time-division duplex (TDD)
system the channel coefficients can be predicted from the
training symbols received in the uplink (reverse link). In
Sec. 3 this example is generalized to the Gramian of a ma-
trix, which is a general affine function in correlated complex
Gaussian random variables. Two common estimation ap-
proaches are given as a reference, before deriving the condi-
tional mean (CM) estimator of the Gramian without requir-
ing the distribution of the Gramian matrix explicitly (Sec.

4.3). Estimating the squared magnitude of a channel coef-
ficient (channel power) is a very special case of the general
problem considered here: For this case an estimator equiv-
alent to our solution was introduced in a heuristic fashion
by Ekman et al. [1]. The additional computational com-
plexity to design the CM estimator of the Gramian is small
compared to a CM estimator of the channel coefficients.

The MSE of the novel and traditional estimator is de-
rived explicitly (Sec. 5) and evaluated numerically for the
example from Sec. 2. Results for different scenarios, values
of SNR and system parameters show a significant perfor-
mance gain for increasing number of users, low SNR, and
increased time-variance of the channel parameters.

It has to be noted that the conditional mean estimator
of the Gramian presented here allows further insights into
the performance and interpretation of robust optimization of
pre-equalization or precoding [4]: For example, it yields a
(structured) loading of the inverse as obtained by robust op-
timization with the paradigm from stochastic programming.

Notation: Random vectors and matrices are denoted by
lower and upper case sans serif bold letters (e.g. a, A),
whereas the respective realizations or deterministic variables
are italic (e.g. a, A). The operators E[•], (•)T, (•)H, and
tr(•) stand for expectation, transpose, Hermitian transpose,
and trace of a matrix, respectively. ∗ and ⊗ denote the con-
volution and Kronecker product. The N×N identity matrix
is IN and 0M×N the M × N matrix of zeros.

2. EXAMPLE: DESIGN OF PRE-EQUALIZATION

To motivate the problem let us consider the design of a lin-
ear pre-equalization filter P ∈ C

MB×KB [3] for a wireless
communication system with K users and M transmit anten-
nas. A transmitted block of B data symbols for each user
sd ∈ CKB is predistorted by P . The received signal reads

yd = HT
wP sd + nd ∈ C

K(B+L), (1)

where nd is additive noise with variance σ2
n and

Hw =
L∑

�=0

J � ⊗ Hw,� ∈ C
MB×K(B+L) (2)
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the block Toeplitz channel matrix for a frequency selective
channel Hw[n] =

∑L
�=0 Hw,�δ[n − �] ∈ CM×K of or-

der L with selection matrix J� = [0B×�, IB,0B+L−�] de-
scribing its structure. The transmit filter P is optimized to-
gether with a scalar receive filter β minimizing the mean
square error (MSE) E[‖β−1yd −Ψsd‖2

2] under a constraint
‖P ‖2

F ≤ ETx on the transmit power (assuming uncorrelated
symbols of variance one) [2, 3]. For complexity reasons the
data-stream is split into blocks of size B [4]. Therefore, we
have to suppress the interference generated for the follow-
ing block described by Ψ = [IBK ,0BK×LK ]T.

The resulting transmit Wiener filter is

P = β

(
H∗

wHT
w +

σ2
n(B + L)K

ETx
IMB

)−1

H∗
wΨ (3)

with β chosen to satisfy the power constraint with equality.
The matrix to be inverted depends on the complex conjugate
of the Gramian of Hw, which leads us to the conclusion that
it may be advantageous to estimate the Gramian HwHH

w

directly additionally to estimating Hw only.
Considering a TDD system, the channel Hw for design-

ing P can be estimated from the reverse link: N training
symbols s[n] ∈ BK with n ∈ {−L, · · · , N − 1} are time
multiplexed including L guard symbols. The received train-
ing sequence yw[n] in time-slot w is

yw[n] = Hw[n] ∗ s[n] + nw[n] ∈ C
M (4)

assuming correlated block fading of the channel and can be
rewritten as

yw = Shw + nw ∈ C
MN , where (5)

yw = [yw[0]T, · · · , yw[N − 1]T]T,

nw = [nw[0]T, · · · ,nw[N − 1]T]T,

S = S′T ⊗ IM ∈ CMN×KM(L+1), S′ ∈ CK(L+1)×N is
block Toeplitz with first block row [s[0], · · · , s[N − 1]] and
first column [s[0]T, · · · , s[−L]T]T. The additive noise nw

is distributed asNc(0, Cnw
). hw=vec([Hw,0, · · · ,Hw,L]) ∈

CP contains all P = MK(L + 1) channel coefficients.
This example will be used for the numerical results in

Sec. 6. For solving the problem of estimating HwHH
w we

now switch to a more general notation.

3. PROBLEM STATEMENT

Given a matrix A, whose elements are affine functions of

h =vec ([H0, H1, · · · , HL]) ∈ C
P , H� ∈ C

M×K ,

i.e. A(h) =
L∑

�=0

J � ⊗ H� (6)

with J � (definition depends on the problem) describing its
structure, we would like to estimate its Gramian matrix G

G(h) = A(h)A(h)H =
L∑

�=0

L∑
�′=0

J�J
H
�′ ⊗ H�H

H
�′ . (7)

We assume that h is a circular symmetric complex Gaussian
random vector with mean E[h] = 0 (for simplicity) and co-
variance matrix Ch = E[hhH] denoted as h ∼ Nc(0, Ch).

Estimation of A(h)A(h)H is based on the (indirect) ob-
servation y = [yT

1 , yT
2 , · · · , yT

W ]T of a sequence of W re-
alizations of a zero-mean random vector hw in the linear
model

y = SThT + n ∈ C
WNM , where (8)

ST = IW ⊗ S ∈ CWMN×WP , hT = [hT
1 ,hT

2 , · · · ,hT
W ]T

∈ C
WP . The cross-covariance matrix between hT and h is

ChTh = E[hThH] ∈ C
WP×P . (9)

The measurement noise is also circular symmetric complex
Gaussian: n ∼ Nc(0, Cn). All first and second order statis-
tics are assumed perfectly known in the sequel.

4. ESTIMATORS FOR THE GRAMIAN G(H)

4.1. Maximum Likelihood Approach

Due the invariance property of the ML estimator [5], the
ML estimate of G(h) is given by the transformation of the
ML estimate ĥML of h:

ĜML = A(ĥML)A(ĥML)H. (10)

If the probability density of the observation y (8) is not pa-
rameterized by h, i.e. h is not contained in hT, ML estima-
tion is not possible based on this model, as for example in
case of prediction (see our scenario in Sec. 6).

4.2. Heuristic Approach

The a priori information about the statistics of h is optimally
exploited for estimation of h by the conditional mean (CM)
estimator

ĥCM = E[h|y] = W CMy (11)

W CM = CH
hThS

H
T(STChTSH

T + Cn)−1 (12)

minimizing the average cost for a quadratic risk function
[5]. Conventionally, when the Gramian matrix G(h) is de-
sired (as in Eqn. 3) the estimate ĥCM is simply plugged in
the transformation to obtain an estimate:

ĜH = A(ĥCM)A(ĥCM)H. (13)

This heuristic intuitively applies the ML invariance prop-
erty to a case, where it does not hold: h is considered a
random vector whose probability distribution is not invari-
ant towards a non-linear transformation such as (7).
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4.3. Conditional Mean Estimator

Thus, the estimate Ĝ can be improved considering the prob-
ability distribution of G, which is a Wishart distribution [6].
The conditional mean estimate of G = A(h)A(h)H

ĜCM = E[G(h)|y] = E[A(h)A(h)H|y]

=
L∑

�=0

L∑
�′=0

J �J
H
�′ ⊗ E[H�H

H
�′ |y] (14)

minimizes the average cost for the risk function ‖Ĝ−G‖2
F,

i.e. the squared Frobenius norm of the error. With H� =
[h1,�, h2,�, · · · , hK,�] and H�H

H
�′ =

∑K
k=1 hk,�h

H
k,�′ we

can express the conditional mean estimate of the Gramian
H�H

H
� as

E[H�H
H
�′ |y] =

K∑
k=1

E[hk,�h
H
k,�′ |y], (15)

i.e. the sum of conditional mean estimates of outer products
hk,�h

H
k,�. Recognizing it as a conditional correlation matrix

we do not require the distribution of G explicitly to derive
the estimator, simplifying the derivation tremendously:

E[hk,�h
H
k,�′ |y] = E[hk,�|y]E[hk,�′ |y]H + Chk,�hk,�′ |y

= ĥk,�,CMĥ
H

k,�′,CM + Chk,�hk,�′ |y. (16)

The first term is the outer product of the conditional mean
estimate of hk,� and hk,�′ as in (13). The conditional covari-
ance matrix

Chk,�hk,�′ |y = E[(hk,� − ĥk,�,CM)(hk,�′ − ĥk,�′,CM)H|y]

is equal to the error covariance matrix of the conditional
mean estimate ĥk,�,CM due to the orthogonality property of
the conditional mean estimator and jointly (complex) Gaus-
sian random variables [5]. Thus, the error hk,� − ĥk,�,CM is
statistically independent from the observation y, i.e.

Chk,�hk,�′ |y =E[(hk,� − ĥk,�′,CM)(hk,� − ĥk,�′,CM)H],

which is a submatrix of

Ch|y = Ch − W CMSTChTh, (17)

which directly depends on the CM estimator W CM (12) of
h. Summarizing the derivations, the CM estimator of G(h)
(14) is given by

ĜCM =E[G(h)|y] =A(ĥCM)A(ĥCM)H + CA(h)|y, (18)

i.e. the Gramian based on the conditional mean estimate
(11) plus the error covariance matrix for estimating A (6):

CA(h)|y =E
[(

A(h) − A(ĥCM)
)(

A(h) − A(ĥCM)
)H

∣∣∣∣y
]

=
L∑

�=0

L∑
�′=0

J �J
H
�′ ⊗ Chk,�hk,�′ |y. (19)

The additional computational complexity of the CM esti-
mator (18) compared to the heuristic approach (13) is very
small: some additional matrix multiplications – assuming
the estimator in (11) is given – are needed to compute Ch|y,
whose submatrices are Chk,�hk,�′ |y .

5. PERFORMANCE ANALYSIS

An analytic expression for the mean square error (MSE)
of the conditional mean estimator w.r.t. squared Frobenius
norm ‖ • ‖2

F of E = ĜCM −G(h) (cf. Eqns. 14 and 18), i.e.

σ2
E = E[‖ĜCM − G(h)‖2

F] = E[tr(G(h)G(h)H)]−
− 2E[tr(G(h)ĜCM))] + E[tr(ĜCMĜ

H

CM)], (20)

can be derived using results from [7] on higher order mo-
ments of complex Gaussian random variables. For zero
mean h and hT we get

σ2
E =

L∑
�,�′=0

L∑
α,α′=0

K∑
k,γ=1

tr(J �J �′JαJα′)× (21)

×[tr(Chγ,αhk,�′ )tr(Chγ,α′hk,�
) + tr(Chk,�hk,�′ Chγ,αhγ,α′ )

−2tr(C ĥγ,αhk,�′
)tr(Chγ,α′ ĥk,�

) − 2tr(Chk,�hk,�′ C ĥγ,αĥγ,α′ )

+tr(C ĥγ,αĥk,�′
)tr(C ĥγ,α′ ĥk,�

) + tr(C ĥk,�ĥk,�′
C ĥγ,αĥγ,α′ )

+tr(C ĥk,�ĥk,�′
C ĥγ,αĥγ,α′ ) + tr(C ĥk,�ĥk,�′

Chγ,αhγ,α′ |y)

+tr(C ĥγ,αĥγ,α′Chk,�hk,�′ |y) + tr(Chk,�hk,�′ |yChγ,αhγ,α′ |y)],

where the necessary covariance matrices are submatrices of
Ch, Ch|y from (17), C ĥh = W CMSTChTh and C ĥ =
W CMSTChThSH

TW H
CM + WCMCnW

H
CM. The MSE for

the heuristic approach (13) is given from (21) for Ch|y = 0.

6. NUMERICAL RESULTS FOR THE EXAMPLE

Returning to our example in Sec. 2, we now set h = hw ,
hT = [hT

w−3,h
T
w−5, · · · ,hT

w−(2W+1)]
T, and Hw = A(hw)

(Eqn. 2). Thus, we model a TDD system with alternating
up-/downlink slots and a delay of 3 slots (due to processing
the training sequence [4]) to the first slot available with a
training sequence. W = 5 previous uplink slots are consid-
ered for prediction of the Gramian G = HwHH

w.
Model parameters – unless otherwise stated: A system

with K = 6 users and an uniform linear array of M = 8
elements with half-wavelength spacing, N = 30 QPSK
training symbols, a channel of order L = 3 with exponen-
tial power delay profile (∝ exp(−�/1.28)) is considered.
Channel coefficients of different users and delays are un-
correlated and spatial correlations are modeled by Laplace
distributed angles of arrival with angular spread σ∆φ = 10◦

around a uniformly distributed mean angle per tap and user
[8]. Equal temporal correlations are assumed for all coef-
ficients given by a Jakes power spectrum with a Doppler
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frequency fd = 0.12 normalized by the slot period, e.g.
1/1500 s as in TD-SCDMA. For pre-equalization (3) data
is split into blocks of length B = 9, i.e. Hw ∈ C72×72 (2).

All figures show the MSE given by (21) for predicting
the Gramian G = HwHH

w in (3) normalized by the number
of elements in G. Due to its (implicit) a priori informa-
tion about the distribution of the Gramian, the CM estima-
tor (18) gains significantly over the heuristic approach (13),
whenever predicting G is difficult: For low and moderate
SNR (Fig. 1), large number of users K (⇒ high system
load/more parameters, Fig. 2), and high Doppler frequency
(⇒ low temporal correlations, Fig. 3) the CM estimator
should be employed. Note, that it relies on the same infor-
mation as the CM estimator of h (12) and requires only a
small amount of additional complexity.

Moreover, the gain is larger for lower spatial correlation
(Fig. 1) in the interesting SNR range, whereas for very low
SNR the order is reversed.
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Fig. 1. MSE vs. SNR for different spatial correlations given
by angular spread: {1◦, 10◦, 60◦} (fd = 0.12, K = 6).
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