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ABSTRACT

This paper presents a method for jointly designing the transmitter-
receiver pair in a block-by-block transmission system that em-
ploys minimum mean square error intra-block decision feedback
detection. We provide a recursive closed-form expression for
a transceiver which maximizes the Gaussian mutual information
and also minimizes the bit error rate at moderate-to-high signal-
to-noise ratios (in the absence of error propagation). The pro-
posed design generates uncorrelated inputs to the decision device
with equal signal-to-interference-and-noise ratios. These proper-
ties suggest that one can approach the capacity of the block trans-
mission system using (independent instances of) the same (Gaus-
sian) code for each element of the block. Our simulation studies
indicate that the proposed transceiver performs significantly bet-
ter than standard transceivers, and that it retains its performance
advantages in the presence of error propagation.

1. INTRODUCTION

In block-by-block communication schemes, blocks of data are
transmitted in a manner that avoids interference between the re-
ceived blocks, and hence the detector need only operate on a block-
by-block basis. Such schemes arise naturally in narrowband quasi-
static multiple antenna systems, and they are effective schemes
for the transmission of data over dispersive media; e.g., OFDM
and DMT. In general, an optimal detector for a block transmis-
sion system must make a decision on the received data block as a
whole. (In certain cases, such as OFDM and DMT, the elements
of that block can be decoupled.) A useful compromise between
performance and complexity in this task can be obtained by em-
ploying minimum mean square error intra-block decision feedback
detection (MMSE-BDFD) [3, 5]. In fact, in the absence of error
propagation, these so-called MMSE generalized decision feedback
equalizers are “canonical” receivers [3] in the sense that employ-
ing an MMSE-BDFD in place of the maximum likelihood detector
does not reduce the achievable data rate.

Our goal is to jointly design the transmitter and receiver ma-
trices so as to optimize the performance of a block communica-
tion system with an MMSE-BDFD. The design is based on knowl-
edge of the channel, and hence is an appropriate choice for sys-
tems in which there is timely, reliable feedback from the receiver
to the transmitter. Our initial design objective is to minimize the
arithmetic mean of the squared errors at the decision point (the
MSE). That problem has previously been deemed to be difficult,
and hence several authors have suggested minimizing the geomet-
ric mean of the squared errors (the geometric MSE) [8], which
is a lower bound on the MSE. It is reasonably well known [3, 8]
that any transmitter which minimizes the geometric MSE of an
MMSE-BDFD also maximizes the Gaussian mutual information.

The set of such transmitters is parameterized by a unitary matrix.
Unfortunately, the standard choice from this set of transmitters
does not minimize the (arithmetic) MSE. (It only minimizes the
lower bound on the MSE.) Furthermore, it produces potentially
different decision point signal-to-noise ratios (SNRs) for each ele-
ment of the block. Therefore, in order to achieve reliable commu-
nication at rates which approach the capacity of the block trans-
mission system, different (Gaussian) codes may need to be applied
for each element of the block [3].

In this paper we provide a recursive closed-form expression
for a choice of the above-mentioned unitary matrix degree of
freedom that results in the minimization of the arithmetic MSE.
The resulting transceiver has many desirable properties. In ad-
dition to maximizing the mutual information between transmit-
ter and receiver for Gaussian signals, and minimizing the arith-
metic and geometric MSEs, it (essentially) minimizes the bit er-
ror rate (BER) of a uniformly bit-loaded system employing QAM
signalling at moderate-to-high signal to noise ratios (SNRs). The
proposed design also generates uncorrelated inputs to the deci-
sion device, maximizes the minimum decision point signal-to-
interference-and-noise ratio (SINR) over the block, and results in
each element of the block having the same SINR. In particular,
from within the set of transceivers which maximize the Gaussian
mutual information we obtain a transceiver which provides un-
correlated inputs to the decision device which have identical (and
maximized) SINRs. Since the MMSE-BDFD is a canonical re-
ceiver [3], this suggests that by using our design, reliable commu-
nication at rates approaching the capacity of the block transmission
system can be achieved using (independent instances of) the same
(Gaussian) code for each element of the block.

Our design is based on the standard assumption [3, 8] that
the previous symbols were correctly detected. However, error
propagation is not catastrophic in block-by-block communication
schemes because errors can only propagate over a single block.
Our simulation studies verify that statement by indicating that the
proposed transceivers perform significantly better than standard
transceivers, and that they retain their performance advantages in
the presence of error propagation.

2. BLOCK-BY-BLOCK TRANSMISSION

We consider a generic block transmission model in which a block
of M data symbols, s, is linearly precoded to construct a block of
K ≥ M channel symbols, u = Fs, which is transmitted over the
channel. The receiver independently processes a block of P ≥ M
received samples in order to detect the data vector s. The received
block, y, can be written as

y = HFs + v, (1)
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Fig. 1. A block diagram for (2).

where v is a length P vector of zero-mean circular and additive
Gaussian noise samples with positive definite correlation matrix
Rvv , and H is the P ×K channel matrix. We will assume that the
data symbols have zero mean and are white, of unit energy, and
not correlated with the noise, (i.e., E[ssH ] = I and E[svH ] = 0).

The MMSE-BDFD first preprocesses y with an M ×P “feed-
forward” matrix W (given in (4) below) to form z = Wy. The
detection of the transmitted symbols sm = [s]m then proceeds se-
quentially, starting from m = M , by making a scalar decision on
ŝm = zm −�M

�=m+1 bm�s̃�, where s̃� denotes the decision made
on the �th symbol. If the the coefficients bm� are arranged in a
strictly upper triangular M × M matrix B, the operation of the
block transceiver is equivalent to successively solving the rows of
the following equation, starting from the M th row (see Fig. 1),

ŝ = WHFs + Wv − Bs̃. (2)

Under the assumption of correct past decisions (i.e., when deciding
sm, s̃� = s� for all m + 1 ≤ � ≤ M ), the error between the input
to the decision device and the original transmitted symbol is

e = ŝ − s = (WHF − I− B)s + Wv. (3)

If we let Ree denote the covariance matrix of e, then the (arith-
metic) MSE of the detector input is ē2 = tr(Ree)/M , and the
feedforward matrix that minimizes the MSE is

WMMSE = (B + I)(FHHHR−1
vv HHFH + I)−1FHHHR−1

vv .
(4)

With the choice W = WMMSE , we have

Ree = (B + I)(I + FHHHR−1
vv HF)−1(B + I)H . (5)

3. PRECODER DESIGN

The goal of our design is to find matrices F and B that minimize
the (arithmetic) MSE subject to an average transmitted power con-
straint. Letting U = B + I, that design problem is

min
F,U

tr(U(I + FHHHR−1
vv HF)−1UH) (6a)

subject to tr(FFH) ≤ p0, U is monic upper triangular. (6b)

We will solve this problem in two stages. First we will obtain a
lower bound on the objective, and will minimize that lower bound.
We will then obtain matrices F and B for which the original ob-
jective achieves the minimized lower bound.

The first stage begins by observing that the arithmetic-
geometric mean inequality and the structure of U imply that

tr(U(I + FHHHR−1
vv HF)−1UH)

≥ M |I + FHHHR−1
vv HF|−1/M , (7)

where | · | denotes the determinant. Therefore, minimizing the
lower bound on the MSE reduces to

max
F

|I + FHHHR−1
vv HF| s.t. tr(FFH) ≤ p0. (8)

Although the objective in (8) was derived as the reciprocal of the
geometric MSE in (7), it is also [3, 8] the Gaussian mutual in-
formation. Hence, minimizing the lower bound on the arithmetic
MSE is equivalent to maximizing the Gaussian mutual informa-
tion. Therefore, the solution to (8) involves a “waterfilling” power
allocation over the eigenvectors of HHR−1

vv H, [6]. More for-
mally, if HHR−1

vv H = VΛVH denotes an eigen decomposi-
tion of HHR−1

vv H with eigenvalues λi arranged in non-increasing
order, the solution depends on a parameter r ≤ K which is the
largest integer satisfying 1/λr <

�
p0 +

�r
j=1 λ−1

j

�
/r. If we de-

fine q = min{r, M}, then the following set of precoders minimize
the lower bound [6]: F = Ṽq

�
Φ 0q×(M−q)

�
Ψ, where Ṽq is

the first q columns of V, Φ is a q × q diagonal matrix with diago-
nal elements satisfying

|φii|2 =
1

q

�
p0 +

q�
j=1

λ−1
j

�
− λ−1

i , (9)

and Ψ is an arbitrary M × M unitary matrix. (Since the rank of
the resulting product HF is q, if M were a design variable rather
than a parameter of the problem, a natural choice for M would be
M = r.) The minimized lower bound on the MSE is

ē2 ≥ qq/M
�
p0 +

q�
j=1

λ−1
j

�−q/M
q�

j=1

λ
−1/M
j . (10)

Moving to the second stage of our design approach, we now
determine a transceiver whose arithmetic MSE achieves the min-
imized lower bound in (10). Defining Φ̆ = [ Φ 0q×(M−q) ]. and
substituting F = ṼqΦ̆Ψ into (5) and (6a), we have that

Ree = UΨH(IM + Φ̆
T
Λ̃M Φ̆)−1ΨUH , (11)

where Λ̃M is the upper left M × M block of Λ. From the con-
ditions for equality in the arithmetic-geometric mean inequality
we know that for the MSE to achieve its minimized lower bound,
we must choose Ψ and U so that Ree = µ̄I, where µ̄ is equal
to the right hand side of (10). That is, we must choose Ψ and
Ū = 1/

√
µ̄ U so that

(IM + Φ̆
T
Λ̃MΦ̆)1/2Ψ = PŪ, (12)

where P is unitary and Ū has all its diagonal elements equal to
1/

√
µ̄. The following result, which is a special case of a more

general result in [9], provides a solution to (12).

Lemma 1 Let Γ be an M × M positive definite diagonal ma-
trix. There exists a unitary matrix S such that ΓS = QR, where
Q is an M × M unitary matrix and R is an upper-triangular

matrix with equal diagonal elements [R]ii =
�	M

k=1 γk

�1/M
,

i ∈ [1, M ], where γk is the kth diagonal element of Γ. Such
an S can be obtained by using the algorithm in the Appendix.

Our transceiver design can now be summarized as follows:

Proposition 1 The mean-square error tr(Ree)/M achieves its
minimized lower bound (10) when F = Ṽq [ Φ 0 ]Ψ, where Φ
satisfies (9), and Ψ is obtained by applying the algorithm in the

Appendix to (IM + Φ̆
T
Λ̃M Φ̆)1/2. The corresponding feedback

matrix B = U − I, where U =
√

µ̄ Ū, and Ū is obtained from
the QR-decomposition in (12). Substituting such F and B into (4)
yields W.
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From the derivation it is apparent that our precoder, which
minimizes the arithmetic MSE, lies in the set of precoders which
minimize the geometric MSE (and maximize the Gaussian mutual
information). However, a precoder chosen arbitrarily from that set
does not necessarily minimize the arithmetic MSE. This observa-
tion provides a connection between the proposed design and that
in [8]. When simplified to the current context, the design in [8]
corresponds to choosing Ψ = IM , rather than choice of Ψ in
Prop. 1. While the choice of Ψ = IM results in a system that
minimizes the geometric MSE, it does not minimize the arithmetic
MSE in the general case. In addition, the SINR for each element of
the block may be different. In contrast, the choice of Ψ in Prop. 1
minimizes the geometric MSE and the arithmetic MSE, and pro-
vides an equal SINR for each element of the block.

The choice of Ψ also has an impact on the nature of cod-
ing strategies for approaching the capacity of the block-by-block
transmission system. From the discussion following (8) it is evi-
dent that the Gaussian mutual information is maximized by choos-
ing M = r and employing a transmitter matrix of the form
F = ṼrΦΨ, where Φ satisfies (9) and Ψ is an arbitrary r × r
unitary matrix. The choice Ψ = Ir results in a “vector coding”
scheme [3] in which the feedback component of the MMSE-BDFD
is inactive; i.e., B = 0. Vector coding induces an equivalent sys-
tem with r parallel Gaussian subchannels, each with a possibly
different SNR ρi, and one can approach the capacity of the block
transmission scheme by simply choosing the code for the ith ele-
ment of the block to be one that approximates the ideal Gaussian
code of rate bi = log2(1 + ρi) bits per channel use. The choice
of Ψ in Prop. 1 results in a system in which the feedback com-
ponent of the MMSE-BDFD is active, and the inputs to the deci-
sion device are uncorrelated and have identical SINRs ρ. Since the
MMSE-BDFD is a canonical receiver, this suggests that one can
also approach the capacity of the block transmission system by
employing an independent instance of the same approximation of
the ideal Gaussian code of rate b = log2(1 + ρ) for each element
of the block.

4. BIT ERROR RATE PERFORMANCE

In this section, we show that the (F,B) pair in Prop. 1 also mini-
mizes the (dominant components of the) bit error rate (BER) of a
system with uniform bit loading at moderate-to-high SNRs. We
define the average BER of the detected signal to be the aver-
age of the probability of error of each element of the block; i.e.
Pe = (1/M)

�M
i=1 Pei, where Pei denotes the BER of the ith

symbol si. If all the previous decisions are correct, for square
QAM signalling with 2bi bits per symbol, Pei is closely approxi-
mated by [2]

Pei ≈ P̃ei = αi erfc
��

βiρi

�
+ ζi erfc

�
3
�

βiρi

�
, (13)

where erfc(x) = (2/
√

π)
�∞

x
e−z2

dz, ρi is the ith decision point

SINR, αi =

√
4bi−1

bi

√
4bi

, βi = 3

2(4bi −1)
, and ζi =

√
4bi −2

bi

√
4bi

. The ex-

pression in (13) involves the approximation of the residual intra-
block interference by a Gaussian random variable. This approx-
imation is (almost surely) sufficiently accurate for all by the last
few elements of the block; c.f., [7]. Under our assumptions, we

have that ρi = −1 + 1/[Ree]ii. Hence,

Pe ≈ P̃e =
1

M

M�
i=1

αi erfc
��

βi

�
([Ree]ii)−1 − 1

��

+ ζi erfc
�
(3
�

βi

�
([Ree]ii)−1 − 1

��
. (14)

Since our design generates equal ρi’s (recall that the optimal
system results in Ree = µ̄I), we will assume uniform bit-loading
in the remainder of this section, and therefore we will drop the
element index i in αi, βi and ζi. When [Ree]ii < 2β/3, which
corresponds to moderate-to-high SINRs, P̃e is a convex function of
[Ree]ii, [1, 4]. By applying Jensen’s inequality to (14), we obtain
the lower bound

P̃e ≥ α erfc
��

β
�
M/ tr(Ree) − 1

��

+ ζ erfc
�
3
�

β
�
M/ tr(Ree) − 1

��
. (15)

Equality in (15) holds if and only if the diagonal elements of
Ree are equal. Equation (15) exposes an intriguing relationship
between the (arithmetic) MSE and the BER. Since minimizing
tr(Ree) minimizes both terms on the right hand side of (15), min-
imizing the lower bound on the BER in (15) is equivalent to mini-
mizing the MSE. However, for the actual BER to achieve the min-
imized lower bound (i.e., for (15) to hold with equality), the diag-
onal elements of Ree must be identical. Fortunately, the diagonal
elements of Ree are equal for our design in Prop. 1. Therefore,
we can conclude that at moderate-to-high SINRs, the system in
Prop. 1 is a minimum BER system in the sense that it minimizes
P̃e in (14).

5. PERFORMANCE ANALYSIS

We now compare the performance of our design to that of exist-
ing designs, and demonstrate its graceful performance degradation
in the presence of error propagation. We consider zero-padded
block transmission (e.g., [5]) over a scalar channel. (A multi-
ple antenna example appears in [7].) We will consider the trans-
mitter in Prop. 1, denoted by FOPT-MMSE-BDFD , the “single-carrier
zero-padded” (SCZP) transmission scheme, FI =

�
p0/M I,

and the “zero-padded OFDM” (ZP-OFDM) scheme, FZP-OFDM =�
p0/M D, where D is a normalized discrete Fourier transform

matrix. In both those additional cases, the receiver matrices B
and W are chosen according to an existing design procedure [5].
As a benchmark, we will also consider the system with a linear
MMSE equalizer that provides the minimum BER [1, 4]. We will
consider two scenarios. In both scenarios, the noise is white (i.e.,
Rvv = σ2I), the channel has an impulse response of length 5,
and the block sizes are M = 16 and P = 20. Each element
of s is an independent 4–QAM symbol with equally likely sig-
nalling points. We will plot the BER against the block SNR,
tr(FFH)/tr(Rvv) = p0/(Pσ2).

Single channel scenario: In Fig. 2(a) we provide the BER
performance of each scheme in a single channel with zeros at
1, 0.9j,−0.9j, and 1.3 exp(jπ5/8). From the solid curves it is
clear that in the absence of error propagation the proposed scheme
performs significantly better than the SCZP scheme, with an SNR
gain of almost 1 dB at a BER of 10−4. Furthermore, the dashed
curves demonstrate that this performance advantage is maintained
in the presence of error propagation.
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Fig. 2. BER performance in the two channel scenarios in
Section 5. Legend—solid curves: correct decisions fed back;
dashed curves: actual decisions fed back; �: optimized scheme,
FOPT-MMSE-BDFD ; ◦: SCZP scheme, FI ; �: ZP-OFDM scheme,
FZP-OFDM; +: optimized scheme with linear MMSE detection [1,4].

Random channel scenario: In Fig. 2(b) we provide the av-
erage BER performance over 500 randomly generated channels,
whose taps were generated independently from a zero-mean cir-
cular complex Gaussian distribution and then normalized. Similar
trends are apparent. In particular, the precoder in Prop. 1 provides
an SNR gain approaching 0.5 dB over the SCZP scheme, and this
advantage is maintained in the presence of error propagation.

6. CONCLUSION

In this paper, we have jointly designed the precoder and the feed-
back matrix of a block transmission scheme equipped with a min-
imum mean-square error intra-block decision feedback detector
(MMSE-BDFD). The design minimizes the arithmetic mean of the
expected squared errors at the decision point in the absence of er-
ror propagation, and also maximizes the Gaussian mutual informa-
tion. The covariance matrix of the minimized error is white, and
hence the proposed design also minimizes the (dominant compo-
nents of the) bit error rate of a uniformly bit-loaded transmission
system. In our simulations, the proposed system performed bet-
ter than standard precoding systems, and retained its performance

advantage in the presence of error propagation. Furthermore, the
fact that the MMSE-BDFD is a canonical receiver suggests that by
using the proposed design, one can approach the capacity of the
block transmission system by using independent instances of the
same (Gaussian) code for each element of the block.

A. ALGORITHM FOR LEMMA 1

Arrange Γ so that γk ≥ γk+1 and let g =
��M

k=1 γ2
k

�1/M
. Let

sk be the kth column of S and s�k its elements. Let Sk be the
first k columns of S and S⊥

k its orthogonal complement. Define
PA = I−A(AHA)−1AH , and A(k) =

�
ΓS⊥

k

�HP(ΓS⊥
k

)ΓS⊥
k .

The algorithm proceeds as follows:

1. Initialization: Set k = 1. An explicit solution for s1 is

s11 =

�
g−γ2

M

γ2
1−γ2

M
, sM1 =

�
γ2
1−g

γ2
1−γ2

M
,

s�1 = 0 for � = 2, 3, · · · , M − 1.
2. Construct A(k) and its eigen decomposition,

A(k) = V(k)Λ(k)
�
V(k)

�H
.

3. Set sk+1 = S⊥
k V(k)y(k), where

y
(k)
1 =

�
g−λ

(k)
M−k

λ
(k)
1 −λ

(k)
M−k

, y
(k)
M−k =

�
λ
(k)
1 −g

λ
(k)
1 −λ

(k)
M−k

,

y
(k)
� = 0 for � = 2, 3, · · · , M − k − 1.

4. Increment k. If k ≤ M − 2 return to 2. Otherwise, set
sM = S⊥

M−2V
(M−2)z, where

z1 = −
�

g−λ
(M−2)
2

λ
(M−2)
1 −λ

(M−2)
2

, z2 =

�
λ
(M−2)
1 −g

λ
(M−2)
1 −λ

(M−2)
2

.
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[9] J.-K. Zhang, A. Kav̌cić, and K. M. Wong, “Equal Diagonal QR De-
composition and its Application to Precoder Design for Successive-
Cancellation Detection”, IEEE Trans. Informat. Theory, vol. 51,
pp. 154–172, Jan. 2005.

III - 1112

➡ ➠


