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ABSTRACT

Low-density parity check (LDPC) codes with their near-
Shannon capacity limit error correcting performance and 
iterative decoding algorithm are being evaluated for 
digital communications applications. For LDPC codes to 
be used in real systems, their error floors need to be 
investigated. In this paper, we evaluate the performance of 
disjoint difference set (DDS)-based LDPC codes (with 
column weights 3, 4, 5) and array code-based LDPC 
codes (with column weights 3, 4, 5) in additive, white 
Gaussian noise (AWGN) channel using a high-speed field 
programmable gate array (FPGA) simulation platform. 
The error floor regions (bit error rates down to 10-12) of 
those codes are presented. For better performance of array 
codes, a girth optimization method is proposed and the 
FPGA evaluation results are presented. 

1. INTRODUCTION 

Low-density parity check (LDPC) codes [1-2] have been the 
focus of intensive study [3-4] because of their near-Shannon 
limit error correcting performance as well as the low decoding 
complexity.   Compared to turbo codes, the main advantage of 
LDPC codes is in the decoding methodology. For turbo codes, 
the decoding complexity increases exponentially with the 
constraint length and the decoding is serial. For LDPC codes, the 
decoding complexity increases only linearly with the block 
length and the parallel nature of LDPC decoding makes it 
particularly attractive for VLSI implementation. Tradeoffs 
between throughput and. logic consumption can be achieved to 
optimize the design for different applications without the 
throughput bottleneck as in the case of turbo codes.  Because of 
these benefits, LDPC codes are being investigated for digital 
communications applications. 

Though the decoding complexity of LDPC codes is fairly 
low, for a random LDPC code, the chip area of the decoder is 
dominated by the complicated wiring [5].  Structured LDPC 
codes can lower the routing complexity.  Compared to Turbo 
codes, the main disadvantage of LDPC codes is in their encoding 
complexity.  To reduce the encoding complexity, good code 
structure is needed.

Another major concern with LDPC codes is their error 
floor.  Error floor refers to the phenomenon where the rate of 
decrease in the bit error rate (BER) with increasing signal-to-
noise ratio (SNR) slows down. An important application for low 
error-floor codes is in data storage systems, where high-rate 
codes with very low BER (<10-11) are required. Due to the 
difficulty in analytically determining the code distance spectrum 

and the sub-optimal nature of iterative decoding, the error floor 
of LDPC codes remains an open question.  Software simulations 
are too slow to achieve such very low BERs. Instead, a field 
programmable gate array (FPGA) platform with its high speed 
and reconfigurability can be used to investigate very low BERs.  

In this paper, we investigate the performance of two types 
of LDPC codes: disjoint difference set (DDS)-based LDPC code 
and array code-based LDPC codes. From now on, we will refer 
to these codes as simply DDS codes and array codes. These 
codes are of interest as their encoders can be easily realized using 
the shift registers and their decoder benefits from the quasi-cyclic 
structure of the corresponding parity check matrix H.  We 
evaluated the performance of these codes for column weights 
j=3, 4, 5 (small column weights for practical implementation) 
down to BERs of 10-12.  Girth, an important property of these 
codes, is the length of the shortest cycle in the bipartite graph 
corresponding to a code. Larger girths are preferred and for array 
codes, we propose a method to further improve the girth. The 
good performance after girth optimization is presented.   

The paper is organized as follows. Section 2 is devoted to 
the description FPGA code evaluation platform. Section 3 
describes DDS codes and array codes. The BER and block error 
rate (BLER) results from FPGA evaluation are shown. A girth 
optimization method for array code is proposed in Section 4 and 
the performance improvement after girth optimization is 
presented.  Section 5 concludes the paper. 

2. FPGA PLATFORM

For LDPC code investigations, a general way is through 
C simulation with general purpose microprocessor.   The 
serial nature of microprocessor operation limits the 
simulation speed and only BERs around 1E-6 to 1E-8 are 
usually obtained. To get the code performance at BERs in 
the 1E-11 to 1E-12 region requires a high-speed 
simulation platform.  

We have developed an FPGA platform for code 
evaluation. The main challenge in building the evaluation 
platform is to have enough flexibility in the design for 
reconfiguration while achieving good throughput with 
low logic, memory consumption to fit in a single chip. 
The FPGA platform for code evaluation is shown in Fig. 
1. The starting and ending point of simulation is 
controlled by a PC through a PCI interface (PCI_IF). A 
noise generator generates additive white Gaussian noise 
(AWGN) and passes it to a log likelihood ratio (LLR) 
(prob(bit=0)/prob(bit=1)) calculator. A reconfigurable 
LDPC decoder (DEC) takes the LLRs and outputs 
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improved LLRs. An error analyzer calculates the BER and 
BLER for different iterations from the decoder outputs.

                              Fig. 1 FPGA Platform

This decoder can be easily reconfigured for different
codes that satisfy certain constraints. For more
information about the decoder constraints, architecture,
throughput and logic consumptions, readers are referred to
[6].

3. ERROR FLOOR INVESTIGATION 

3.1 Disjoint Difference Set Based LDPC Code
Consider an arbitrary additive group Z of order v. A (v, j)
difference set is a set  of elements from

1 2{ , ,..., }jD d d d

vZ  such that no two of the  ordered differences

modulo v are identical. By a (v, j, t)-disjoint difference 
sets (DDS) in an additive group

( 1)j j

vZ , we mean a family

 of subsets of( | , | |)iD i I t I vZ , each of cardinality of j,

and such that among the differences
 each nonzero element( | , ; ;ia b a b D a b i I )

vx Z occurs at most once.

The parity check matrix for LDPC codes constructed

based on (v, j, t)-DDS is shown in (1). s are 

binary circulant matrices defined as the incidence

matrix of the -DDS

iH

v v
( , , )v j t

1 2 3... (1)tH H H H H

The code constructed has column weight j, row 
weight k=jt, block length N=vt and code rate larger than
(1-1/t). The actual code rate is 1-rank (H)/vt. This code 
has certain properties. First, the girth of (v, j, t)-DDS
LDPC codes is six if j is great than 3. Second the
minimum distance of (v, j, t)-DDS codes is bounded by
(2). For more information of DDS codes, readers are 
referred to [7] [8].

min (2)1 2j d j

We constructed DDS codes with column weights j=3,
4, 5 and rate 8/9. The evaluation platform shown in Fig. 1 
is configured for different column weight. The BER and 
BLER after 50 iterations are shown in Fig. 2. The solid
lines are for BER and dotted lines are for BLER.  As we 
can see from the results, increasing the column weight 
lowers the error floor while degrading the performance at
cliff BER region. Column weight j=3 code has error floor
at BER 1E-6, j=4 code has error floor at 1E-7 and j=5
code has error floor at 1E-9.
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Fig. 2 DDS Code Error Floor Comparison

3.2 Array Code 

Let 5p be a prime, and let  be the p p identity

matrix cyclically left-shifted by one position. We define a 
parity check matrix H as a block matrix of j p

p p circulant matrices

2 3 1

2 4 6 2( 1)

1 2( 1) 3( 1) ( 1)( 1)

p

p

j j j j p

I I I I I

I

H I

I

 (3) 

The code specified by this matrix is a regular (N, j, k)
LDPC code with row weight k , block lengthp 2N p .

Fan [9] realized that this permutation matrix also defines a
class of array codes. High-rate codes can be obtained by
shortening the code generated by (3). LDPC codes based 
on array code are free of 4-cycles. Their minimum
distance can be shown to be 

min
. However, these

codes contain a significant number of 6-cycles.

6d

We constructed array codes with j=3 N=4671, j=4
N=4716 and j=5 N=4635 with rate 8/9 where j denotes the
column weight and N denotes the codeword length. The
BER and BLER after 50 iterations are shown in Fig 3.
Column weight j=3 code has error floor at BER 1E-8, j=4
code has error floor at 1E-9 and j=5 code has error floor at
1E-11. Array code with column weight 5 has very low
error floor (BER<10E-11) and have potential for
applications that require high rate and low error floor such
as in data storage systems.  Fig. 4 shows more details
about the j=5 array code performance at each iteration.

In Fig. 5, we compare the BER performance of array 
code with j=3, 4, 5(solid lines) with DDS code j=3, 4, 5 
(dot lines). From this figure, we can see that for 
applications requiring very low BER, array codes may be 
a better choice compared to DDS codes. However, when
both codes are qualified for application, DDS codes are 
better candidates as they have lower encoding/decoding
complexity compared to array codes. 
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           Fig. 3 Array Code Error Floor Comparison
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               Fig. 4    J=5 Array Code Performance
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Fig. 5 Array Code vs. DDS code Performance

4. ARRAY CODE GIRTH OPTIMIZATION

Vasic [10] interpreted the parity check matrix H based on 
permutation matrices as a set of even parity equations
with different slopes on a rectangular integer lattice 

, with a one-to-one

mapping of the lattice L to the point set V, .

Fig. 6a shows an integer array with

{( , ) : 0 1,0 1}L x y x j y p

:l L V

3j  and . Let us 

choose a simple linear mapping , and 

define a line with slope s,

5p

( , ) 1l x y p x y

0 s p , starting at the point

(x, a), containing points , mod : 0x a sx p x j ,

where 0 a p . There are p classes of parallel lines

with different slopes. We can use the lines to define a 
2j p p matrix using the points in each line as the index

of ones in each column of the matrix.  Note that the lattice 
has the topology of a torus, so the lines are wrapped 
around. The blocks in H (3) are specified by parallel lines 
of increasing slope [3].

Consider the three lines {1, 7, 13}, {1, 8, 15} and {3, 8,
13} shown Fig. 6a. Notice that the points {1, 8, 13}
appear twice and form a triangle in the lattice, which
suggests that the three columns corresponding to the three
lines in the matrix contains a 6-cycle. In general, there is 
one-to-one mapping between the triangles in the lattice
and the 6-cycles in the graph. Therefore, we can calculate 
the number of 6-cycles, denoted as

6
, by counting the

number of triangles in the lattice. The total number of 6-

cycles is

N

2

6 22 (pN p p p 1) .

A

                            (a)                                    (b) 

Fig. 6 Lattice and Six Cycles

It is possible to avoid or reduce the number of 6-
cycles by removing lines with certain slopes to avoid
triangles in the lattice. Without loss of generality, consider

two lines with slopes and incident on a point O (a,

0) and containing points A and B
as bs

( ,a a aa s x x )

)( ,b b ba s x x , where 0 a bs s p , and 

0 a bx x m , shown in Fig. 6b. A triangle will result 

if there is a line of slope containing points A and B.

Thus, the condition to avoid 6-cycles is
abs

( ) 0modb b a a ab b as x s x s x x p  (4) 

For j=3 case, the condition reduces to

2 0b a ab mods s s p (5)

Using the above conditions, we can get a slope set
which allows us to construct 6-cycle-free LDPC codes.
For instance, the slope set for p=11 satisfies 

the constraint in (5), and can be used to construct a regular 
(N=44, j=3, k=4) LDPC code having girth g=8.Table 1 
shows the obtained sets for different p values when j=3.
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Table1. Sets to avoid 6 cycle for j=3
p Set

5 [0 1]

11 [0 1 3 4]

53 [0 1 3 4 9 10 12 13]

79 [0 1 3 4 9 10 12 13 27 28 30 31 36 37 39]

103 [0 1 3 4 9 10 12 13 27 28 30 31 36 37 39 40]

An 8-cycle in Tanner graph manifests itself in the
lattice as a 4-cycle composed of four points and four tail-
biting edges. Fig. 7 depicts two types of such 4-loops 
which contribute to 8-cycles in the graph code. By
choosing a set of slopes properly, it is possible to avoid 4-
cycle in the lattice, thus avoid 8-cycle in the graph. The 
mapping between the cycles and the geometry structures 
in the lattice can be generalized to cycles of any length. 
However, it is of little practical significance to go beyond
8-cycle-free codes since the code length grows fast as the 
girth increases, in particular for high-rate codes. 

                 (a)  (b) 

            Fig. 7 (a) Triangle (b) Quadrangle in lattice 

A similar equation as (5) can be derived in this 
case. However, a program to search on the graph can
produce an easier solution. Table 2 shows the results for
different p values at j=3.

  Table 2.  Sets to avoid 8 cycle for j=3

p Set

5 [0 1]

11 [0 1 4]

53 [0 1 4 11 29]

79 [0 1 4 11 27 42]

103 [0 1 4 11 27 45]

To get high-rate code, sometimes it is not possible to
avoid all the 6-cycles or 8-cycles. However, reducing the 
number of cycles can also improve the performance.

To evaluate the performance of array code after girth 
optimization, we take j=3 code as example. When p =173, 
the slop set is [0 1 3 4 9 10 12 13 27 28 30 31 36 37 39 40 
81 82 84 85].  By adding seven more arbitrary sets to the
slop set, we can form a rate 8/9 code with block size 4671. 
The performance of the code is compared to a normal
array code in Fig.  8. There is about 0.5 dB gain after girth 
optimization.

5. CONCLUSION

For LDPC codes to be applied in real systems, error
floor of LDPC code needs to be understood. Methods to 
further improve the performance of LDPC codes also 
need to be developed. In this paper, we evaluated the

performance of high-rate array codes and DDS codes 
using an FPGA platform and observed the error floors of 
those codes for different column weights. For array code, 
a girth optimization method is proposed and the good 
performance of the method is demonstrated.
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