
THE EFFICIENT IMPLEMENTATION OF

REED-SOLOMON HIGH RATE ERASURE RESILIENT CODES

Jin Li

Microsoft Research, Communication and Collaboration

One Microsoft Way, Bld. 113, Redmond, WA, 98052.

Email: jinl@microsoft.com

ABSTRACT

In this paper, we investigate the efficient implementation of

Reed-Solomon high rate erasure resilient codes. Though the

implementation of Reed-Solomon codes for error correction

coding has been extensively investigated in the past, there is

little work on the efficient implementation of Reed-Solomon

codes for high rate erasure resilient coding application. In this

paper, we investigate a number of technologies, including the

direct inverse of the Reed-Solomon sub-generator matrix, and

the scalar vector multiplication and addition on the Galois Field

to speed up the Reed-Solomon erasure encoding/decoding op-

erations. Our implementation of the Reed-Solomon erasure code

achieves an encoding/decoding throughput of 25MB per second,

(i.e., 200Mbps), on a Pentium 2.8Ghz computer.

1. INTRODUCTION

A high rate erasure resilient code is a block error correction

code with a large coded message space. It is useful in a number

of content distribution/backup applications. One application is

the digital fountain[1], where a server multicasts/broadcasts

erasure coded messages non-stop to a multiple of clients. Each

client may tune in from time to time, and pick up the coded mes-

sages that are on-air at the moment. Another application is the

distributed backup, where a file is erasure encoded and stored in

a large number of storage units, either locally or in a distributed

fashion. During the recovery, the client attempts to restore the

file from the accessible storage units. The third sample applica-

tion is the distributed content hosting and/or streaming[7], where

a file/media is distributed to a number of hosting servers, each of

which may elect to host a portion of the file/media in the erasure

coded form. During the retrieval, the client locates the hosting

servers that are willing to serve, and retrieves the erasure coded

file/media simultaneously from those servers. In all such applica-

tions, a file and/or media is encoded into a large number of dis-

tinctive coded messages. During the retrieval, the client attempts

to use a minimum number of the coded messages that are equal

to or slightly larger than the original to recover the file/media.

The client usually does not have control over what coded mes-

sages are available. As a result, the process of distributed content

broadcast/backup/hosting/streaming can be considered as pass-

ing the coded messages through an erasure channel with heavy

loss, and recovering the messages afterwards.

A number of error correction codes can serve as the high rate

erasure resilient codes. These codes include: the random genera-

tion of linear codes (RLC)[2], the low density parity check

(LDPC) codes[3], turbo codes[4], LT codes[5], and Reed-

Solomon codes[6]. Among the error correction codes, the Reed-

Solomon codes stand out with a number of unique properties.

Reed-Solomon codes are maximum distance separable (MDS)

codes. They achieve the maximum channel coding efficiency,

and are able to decode the original messages with the exact num-

ber of received coded messages. Because the generator matrix of

the Reed-Solomon codes are structured, the Reed-Solomon

coded message can be identified by the row index, which re-

duces the overhead needed to identify the coded message. Reed-

Solomon codes can be applied to messages with small access

granularity (short message and small number of original mes-

sages), and are suitable for on demand distributed content host-

ing/streaming applications[7].

Though the implementation of the Reed-Solomon error cor-

rection codes has been extensively investigated, there are rela-

tively few works on the efficient implementation of the Reed-

Solomon codes for high rate error resilient coding application,

which bears unique characteristics. For example, in high rate

erasure resilient coding scenario, the coded messages are gener-

ated on demand, just prior to message distribution. This is differ-

ent from the error correction coding application, where all coded

messages are generated at the same time. Another difference is

that much more parity messages are generated and received in

high rate erasure resilient coding. Existing implementations of

Reed-Solomon error correction codes, e.g., [8], do not apply

well for high rate erasure resilient encoding/decoding operations.

In this work, we investigate a number of technologies, in-

cluding the direct inverse of the Reed-Solomon sub-generator

matrix, and scalar vector multiplication and addition, to speed up

the Reed-Solomon high rate erasure encoding/decoding opera-

tions. The rest of the paper is organized as follows. We give a

brief review of the Reed-Solomon high rate erasure resilient

codes in Section 2. The efficient implementation technologies

are examined in Section 3. Experimental results are presented in

Section 4.

2. BACKGROUND: REED-SOLOMON HIGH RATE

ERASURE RESILIENT CODES

High rate erasure resilient codes are block error correction

codes. They may be described with parameter (n, k), where k is

the number of the original messages, and n is the number of the

coded messages. The high rate erasure resilient codes satisfy the

property that n is much larger than k, thus the k original mes-

sages can be expanded into a much larger space of n coded mes-

sages. We define the maximum expansion ratio r of the high rate

erasure resilient codes as:

III - 10970-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

r = n / k. (1)

At the time of decoding, the client receives m messages,

where m is a number equal to or slightly larger than k, and at-

tempts to decode the k original messages from the m received

coded messages.

The operation of the high rate erasure resilient codes can be

described via matrix multiplication over the Galois Field GF(p):

,

1

1

0

1

1

0

=

−− kn x

x

x

c

c

c

MM
G

 (2)

where p is the order of the Galois Field, {x0, x1,
…, xk-1} are the

original messages, {c0, c1,
…, cn-1} are the coded messages, and

G is the generator matrix. Each original/coded messages xi /ci is

usually a long vector, consists of l GF(p) elements. When the

client decodes from the m received coded messages, the decod-

ing operation is solving:

,

'

'

'

1

1

0

1

1

0

=

−− k

m

m x

x

x

c

c

c

MM
G

 (3)

where {c’0, c’1,
…, c’m-1} are the received messages, Gm is a sub-

generator matrix formed by the m rows of the generator matrix G

that correspond to the coded messages. If the sub-generator ma-

trix Gm has a full rank k, the original messages can be recovered.

Reed-Solomon codes use a structured generator matrix G on

GF(p) that has the property that any k rows of the generator ma-

trix G forms a k×k matrix of full rank. As a result, Reed-

Solomon codes are MDS codes with the best error-correction /

erasure error resilience property. Traditional, the Reed-Solomon

generator matrix G is the Vandermonde matrix:

.

)1()1()1(

111

000

10

10

10

−−−

=

k

k

k

nnn L

MOMM

L

L

G
 (4)

In Reed-Solomon error correction coding, it is customary to

form a message polynomial of:

,)(1

1

2

2

1

10

−
−++++= k

k yxyxyxxyf L (5)

and represent the parity messages as:

niifci ,,2,1),(L== . (6)

Most Reed-Solomon error correction coding operations favor the

polynomial representation form of equations (5) and (6). How-

ever, in high-rate erasure resilient coding, the matrix representa-

tion form of (2)-(4) is favored.

An alternative form of Reed-Solomon codes uses the Cauchy

matrix as the generator matrix:

.

)1()1(

1

1)1(

1

0)1(

1

)1()1(

1

1)1(

1

0)1(

1
)1(

1

1

1

0

1

−+−+−+−

−++++++

−+++

=

knnn

kkkk

kkkk

L

MOMM

L

L

kI

G

 (7)

With such a Reed-Solomon code, the first k messages are origi-

nal (systematic) messages (marked by the identity matrix Ik), and

the rest n-k messages are parity (coded) messages. The Cauchy

matrix has been used in the Galois Field in [11][12], and has

been used to define one variant of the Reed-Solomon codes in

[13]. In this work, we implement the Cauchy matrix based Reed-

Solomon erasure encoding/decoding operation more efficiently

with scalar vector multiplication/addition operation described in

Section 3.2.

It can be shown that for both Vandermonde and Cauchy

based Reed-Solomon codes, the maximum expansion ratio r

achievable is p/k. Thus, on GF(p), a (p,k) Reed-Solomon code

can be constructed that generates at most p coded messages,

regardless of the number of original messages k.

In most high rate erasure resilient coding applications, the

equation (2) is usually not used to generate all the coded mes-

sages; rather, it defines a coded message space. The encoded

messages are generated on-demand and one-by-one, for each

multicast/broadcast message, each backup storage unit, or each

hosting server. In the high rate erasure resilient decoding, k

coded messages are collected, with each coded message identifi-

able through the row index of the generator matrix. The erasure

resilient decoding operation then consists of the inversion of the

sub-generator matrix Gk, and the multiplication of the inverse

with that of the coded messages:

.

'

'

'

1

1

0

1

1

0

=

−

−

− kk c

c

c

x

x

x

MM

1

kG
 (8)

3. EFFICIENT IMPLEMENTATION OF REED-

SOLOMON HIGH RATE ERASURE RESILIENT CODES

In this section, a number of technologies that speed up the

Reed-Solomon high rate erasure encoding/decoding operations

are examined. The first technology is the calculation of the direct

inverse of the sub-generator matrix Gk using the structure of the

Reed-Solomon generator matrix. The second technology speeds

up the scalar vector multiplication and addition operations,

which are the dominant operations in the erasure encod-

ing/decoding operation.

3.1. Direct inverse of the sub-generator matrix

3.1.1 For Vandermonde matrix based Reed-Solomon codes

Let us assume that the k coded messages received are indexed

as {t0, t1,
…, tk-1}. The sub-generator matrix Gk are:

.

1

1

1

0

1

1

1

1

0

1

0

1

0

0

0

=

−−−
k

kkk

k

k

ttt

ttt

ttt

L

MOMM

L

L

kG
 (9)

In [10], the inverse of the Vandermonde matrix can be calculated

via:

,11

k QDG −− = (10)

where

() () ()
() () ()

() () ()

,

101000

121202

111101

=

−

−−−−

−−−−

k

kkkk

kkkk

tqtqtq

tqtqtq

tqtqtq

L

MMM

L

L

Q
 (11)

III - 1098

➡ ➡

,

1

1

1

1

1

0

=

−

−

kd

d

d

O

1D

 (12)

(),with ∏
≠

−=
ij

iji ttd (13)

() ()
,

0,1

0,
and

1

=
>+

= −

j

jaxxq
xq

jj

j
 (14)

and aj is the coefficient of the polynomial:

() () .
0

1

0

j
k

j

j

k

i

i xatxxf ∏
=

−

=

=−= (15)

The direct inverse computation includes1 k2/2 operations to cal-

culate the coefficients aj (equation (15)), k2 operations to calcu-

late the coefficients di (equation (13)), k2 operations to calculate

the elements of the matrix Q (equation (14)), and k2 operations

to calculate the elements of the matrix QD-1 (equation (10)). The

computation complexity of the direct inverse is thus 4.5k2, com-

pared with k3 if the inverse is calculated via Gaussian elimina-

tion.

3.1.2 For Cauchy matrix based Reed-Solomon codes

The Cauchy matrix based Reed-Solomon codes consist of

systematic and parity codes. Among the k received coded mes-

sages, let us assume k-s messages are original. For convenience,

we move all the original messages to the front. Let the row index

of the received original messages be {rs, rs+1,
…, rk-1}, and the

row index of the received parity messages be {t0, t1,
…, ts-1}. Let

the row index of the remaining non-received original messages

be {r0, r1,
…, rs}. The received coded messages form the sub-

generator matrix Gk:

= −

BA

0I
G

sk

k

, (16)

where A is a s×(k-s) Cauchy matrix of the form:

,

111

111

111

11111

11111

10100

+++

+++

+++

=

−−+−−

−+

−+

ksssss

kss

kss

rtrtrt

rtrtrt

rtrtrt

L

MMM

L

L

A

 (17)

and B is a s× s Cauchy matrix of the form:

.

111

111

111

111101

111101

101000

+++

+++

+++

=

−−−−

−

−

ssss

s

s

rtrtrt

rtrtrt

rtrtrt

L

MMM

L

L

B

 (18)

1 For GF(2q), the addition is a bitwise xor operation, the multi-

plication requires three table lookups and one addition. Because

the Galois Field multiplication is a dominating factor in compu-

tation complexity, we mainly count the number of multiplica-

tions in the computation of the complexity.

The inverse of the sub-generator matrix Gk can be calculated as:

−
= −

−
−−

s

sk

1

sk1

k
IA

0I

B0

0I
G

. (19)

Cauchy matrix has the property that the determinant of an ar-

bitrary Cauchy matrix B can be calculated as:

() ()

()
,)det(

1

0,

∏

∏∏
−

=

<<

+

−−
=

s

ji

ji

ji

ji

ji

ji

rt

rrtt

B
 (20)

Using the cofactor, the inverse of the Cauchy matrix can be

directly calculated as:

[]
1,,0,, −=

− =
sjijid

L

1B , (21)

where:

() (),1,

ijij

ijji

ji
rtba

fe
d

+
−= + (22)

() () ,−−= ∏∏
>< mi

im

mi

mim tttta (23)

() () ,−−= ∏∏
>< mi

im

mi

mim rrrrb (24)

(),∏ +=
i

imm rte (25)

().∏ +=
i

mim rtf (26)

The direct inverse computation2 includes 4s2 operations to calcu-

late the coefficient am, bm, em, fm, s2 operations to calculate the

coefficient di,j, the computation complexity of the directly in-

verse is thus 5s2, compared with s3 if the inverse is implemented

via Gaussian elimination.

3.2. Galois Field scalar vector multiplication and addition

High rate erasure resilient coding usually involves relatively

long original and coded messages, e.g., 1 kilo byte(KB) each.

During the encoding/decoding operations, the message can be

considered as a long vector of GF(p) elements. Therefore, one of

the key operations in the erasure encoding/decoding is the fol-

lowing scalar vector multiplication and addition operation:

y = y + α⋅x, (27)

where x and y are vectors of l GF(p) symbols, α is a scalar num-

ber in GF(p). In erasure encoding, each erasure coded message

generated via equation (2) requires k scalar vector multiplication

and addition operations. The erasure decoding operation of (8)

can be accomplished by first calculating the elements of the in-

verse of the sub-generator matrix Gk
-1, and then calculating the

decoded messages via k2 scalar vector multiplication and addi-

tion operations. In Cauchy matrix based Reed-Solomon decod-

ing, we may first calculate the elements of the matrix B-1 and A

in equation (19), and then use k⋅s scalar vector multiplication

and addition operations to calculate the decoded messages.

The scalar vector multiplication and addition operation can

be efficiently calculated in GF(p) as follows:

2 Because Gk
-1 is to be multiplied with the received messages,

which involve a scalar vector multiplication and addition opera-

tion, only log(ak), log(bk), log(ek), log(fk) and log(di,j) need to be

computed.

III - 1099

➡ ➡

Preparation. Establish two lookup tables on GF(p) for the loga-

rithmic operation:

 log(x)=log x, (28)

and the exponential operation:

 exp(x)=ex. (29)

On GF(p), each lookup tables contains p elements and only

needs to be pre-calculated once.

Step 1. Test if α is 0.

If α is 0, the result of the computation (27) is simply y. This

step is not always necessary, as certain coefficients of the gen-

erator matrix and its inverse are guaranteed to be non-zero, and

need no testing.

Step 2. Calculate log(α).

Step 3. Perform multiplication and addition for each symbol xi

and yi of the message x and y. First, we test if the symbol xi is 0.

For non-zero symbol xi, the following operation is performed to

update yi:

yi = yi + exp(log(α)+log(xi)). (30)

The operation of (30) can be accomplished via a logarithmic

table lookup, an addition, an exponential table lookup, and an

addition on the Galois Field. Note on GF(2p), the final operation

is a bitwise xor operation.

4. EXPERIMENTAL RESULTS

We implement the high rate Reed-Solomon erasure resilient

code based on the Vandermonde and the Cauchy matrix on

GF(216). We select the order of the Galois Field to be 216 because

of the following. The order p of a general Galois Field must

satisfy:

p = zq, (31)

where z is a prime, and q is a positive integer. Nevertheless,

GF(zq) with z other than 2 does not correspond well with infor-

mation representation in the computer and requires additional bit

to represent the coded message, and thus should not be used. In

GF(2q), each Galois Field symbol can be represented as a q-bit

binary. The symbol in GF(2q) with q=8, 16 and 32 can be espe-

cially efficiently processed, as it corresponds to a byte (8 bit), a

word (16 bit), and a double word (32 bit) in the computer.

GF(28) can only accommodate a maximum of 28=256 coded

messages, which is a little bit small for many high rate erasure

coding applications. In GF(232), the logarithmic and exponential

lookup table contains 232 entries, and thus cannot be used. In

stead, the multiplication operation on GF(232) has to be factored

into 6 multiplication operations on the subfield GF(216), which

increases the computation complexity. Thus, we implement the

high rate Reed-Solomon erasure resilient code on GF(216). The

maximum coded message space is 216=65536. This leads to a

maximum expansion ratio of 4096 if the number of original mes-

sages is 16, and a maximum expansion ratio of 256 if the number

of original messages is 256. Both of which are large enough for

most applications. The logarithmic and exponential lookup ta-

bles on GF(216) contain 65536 entries, and are 128KB each.

We test our implementation by running erasure encoding and

decoding operations, and observe the amount of data that can be

processed each second. The parameter of the erasure resilient

code is the following. The length of the message is 1KB, and the

number of the original messages is 16, in accordance with the

distributed content hosting application of [7]. Our implementa-

tion achieves an encoding/decoding throughput of 25MB per

second, (i.e., 200Mbps) on a Pentium 2.8Ghz computer. Alterna-

tively speaking, if the computer network operates at 10Mbps, the

erasure encoding/decoding operation only takes 5% of the CPU

load. We do not observe significant performance difference be-

tween the Reed-Solomon codes based on the Vandermonde ma-

trix and the Cauchy matrix.

In [13], Bloemer et. al. implement a Reed-Solomon erasure

encoding/decoding operation via xor operation. Their implemen-

tation requires on average q xor operation for each multiplication

operation on GF(2q). In comparison, through the scalar vector

multiplication and addition operation of (27), the corresponding

operation of our implementation takes one comparison to zero,

two table lookups, one addition and one xor operation. We have

implemented the algorithm of [13], and found that it achieves a

throughput of 16MB per second. Our implementation is 50%

faster than the implementation of [13].

5. REFERENCES

[1] J. Byers, M. Luby, M. Mitzenmacher and A. Rege, “A digital

fountain approach to reliable distribution of bulk data”, Proceed-

ings of ACM SIGCOMM '98, Vancouver, Canada, September

1998.

[2] A. Barg and G. D. Forney, “Random codes: minimum dis-

tances and error exponents”, IEEE Trans. on Inform Theory,

Vol. 48, no. 9, Sept. 2002, pp.2568-2573.

[3] W. Tan and J. R. Cruz, “Analyzing low-density parity-check

codes on partial response channels with erasures using density

evolution”, IEEE Trans. on Magnetics, Vol.40, no. 5, Sept.

2004, pp. 3411–3418.

[4] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman,

“Effcient Erasure Correcting Codes”, IEEE Trans. on Informa-

tion Theory, Vol. 47, No. 2, pp. 569-584, February 2001.

[5] M. Luby, "LT Codes", 43rd Annual IEEE Symposium on

Foundations of Computer Science, 2002.

[6] B. W. Stephen and V. K. Bhargava, “Reed-Solomon codes

and their applications”, Wiley Press, 1999.

[7] C. Zhang and J. Li, “Distributed hosting of web content with

erasure coding and unequal weight assignment”, accepted by

Proc. IEEE International Conf. on Multimedia Expo’ 2004,

Taipei, Taiwan, Jun. 2004.

[8] S. Gao, “A new algorithm for decoding Reed-Solomon

codes”, in Communications, Information and Network Security

(V. Bhargava, H. V. Poor, V. Tarokh and S. Yoon, Eds.), Klu-

wer Academic Publishers, 2003, pp. 55-68.

[9] Sharpe, Rings and Factorization, Cambridge University

Press, Cambridge, England, 1987.

[10] I. Kaufman, “The inversion of the Vandermonde ma-

trix and transformation to the Jordan canonical form”, IEEE

Trans. On Automatic Control, Vol. 14, no. 6, Dec. 1969,

pp.774-777.

[11] D. Grigoriev, M. Karpinski, M. Singer, “Fast parallel

alogorithms for multivariate polynomial over finite fields”,

SIAM Journal on Computing, Vol. 19, 1990, pp. 1059-1063.

[12] M. O. Rabin, “Efficient dispersal of information for

security, load balancing, and fault tolerance”, J. ACM, Vol. 36,

No. 2, April 1989, pp. 335-348.

[13] J. Bloemer, M. Kalfane, M. Karpinski, R. Karp, M.

Luby and D. Zuckerman, “An xor-based erasure-resilient coding

scheme”, ICSI TR-95-048, August 1995, Berkeley, CA.

III - 1100

➡ ➠

