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ABSTRACT 

In this paper, we investigate the efficient implementation of 

Reed-Solomon high rate erasure resilient codes. Though the 

implementation of Reed-Solomon codes for error correction 

coding has been extensively investigated in the past, there is 

little work on the efficient implementation of Reed-Solomon 

codes for high rate erasure resilient coding application. In this 

paper, we investigate a number of technologies, including the 

direct inverse of the Reed-Solomon sub-generator matrix, and 

the scalar vector multiplication and addition on the Galois Field 

to speed up the Reed-Solomon erasure encoding/decoding op-

erations. Our implementation of the Reed-Solomon erasure code 

achieves an encoding/decoding throughput of 25MB per second,

(i.e., 200Mbps), on a Pentium 2.8Ghz computer.  

1. INTRODUCTION

A high rate erasure resilient code is a block error correction 

code with a large coded message space. It is useful in a number 

of content distribution/backup applications. One application is 

the digital fountain[1], where a server multicasts/broadcasts 

erasure coded messages non-stop to a multiple of clients. Each 

client may tune in from time to time, and pick up the coded mes-

sages that are on-air at the moment. Another application is the 

distributed backup, where a file is erasure encoded and stored in 

a large number of storage units, either locally or in a distributed 

fashion. During the recovery, the client attempts to restore the 

file from the accessible storage units. The third sample applica-

tion is the distributed content hosting and/or streaming[7], where 

a file/media is distributed to a number of hosting servers, each of 

which may elect to host a portion of the file/media in the erasure 

coded form. During the retrieval, the client locates the hosting 

servers that are willing to serve, and retrieves the erasure coded 

file/media simultaneously from those servers. In all such applica-

tions, a file and/or media is encoded into a large number of dis-

tinctive coded messages. During the retrieval, the client attempts 

to use a minimum number of the coded messages that are equal 

to or slightly larger than the original to recover the file/media. 

The client usually does not have control over what coded mes-

sages are available. As a result, the process of distributed content 

broadcast/backup/hosting/streaming can be considered as pass-

ing the coded messages through an erasure channel with heavy 

loss, and recovering the messages afterwards. 

A number of error correction codes can serve as the high rate 

erasure resilient codes. These codes include: the random genera-

tion of linear codes (RLC)[2], the low density parity check 

(LDPC) codes[3], turbo codes[4], LT codes[5], and Reed-

Solomon codes[6]. Among the error correction codes, the Reed-

Solomon codes stand out with a number of unique properties. 

Reed-Solomon codes are maximum distance separable (MDS) 

codes. They achieve the maximum channel coding efficiency, 

and are able to decode the original messages with the exact num-

ber of received coded messages. Because the generator matrix of 

the Reed-Solomon codes are structured, the Reed-Solomon 

coded message can be identified by the row index, which re-

duces the overhead needed to identify the coded message. Reed-

Solomon codes can be applied to messages with small access 

granularity (short message and small number of original mes-

sages), and are suitable for on demand distributed content host-

ing/streaming applications[7]. 

Though the implementation of the Reed-Solomon error cor-

rection codes has been extensively investigated, there are rela-

tively few works on the efficient implementation of the Reed-

Solomon codes for high rate error resilient coding application, 

which bears unique characteristics. For example, in high rate 

erasure resilient coding scenario, the coded messages are gener-

ated on demand, just prior to message distribution. This is differ-

ent from the error correction coding application, where all coded 

messages are generated at the same time. Another difference is 

that much more parity messages are generated and received in 

high rate erasure resilient coding. Existing implementations of 

Reed-Solomon error correction codes, e.g., [8], do not apply 

well for high rate erasure resilient encoding/decoding operations.  

In this work, we investigate a number of technologies, in-

cluding the direct inverse of the Reed-Solomon sub-generator 

matrix, and scalar vector multiplication and addition, to speed up 

the Reed-Solomon high rate erasure encoding/decoding opera-

tions. The rest of the paper is organized as follows. We give a 

brief review of the Reed-Solomon high rate erasure resilient 

codes in Section 2. The efficient implementation technologies 

are examined in Section 3. Experimental results are presented in 

Section 4.  

2. BACKGROUND: REED-SOLOMON HIGH RATE 

ERASURE RESILIENT CODES  

High rate erasure resilient codes are block error correction 

codes. They may be described with parameter (n, k), where k is 

the number of the original messages, and n is the number of the 

coded messages. The high rate erasure resilient codes satisfy the 

property that n is much larger than k, thus the k original mes-

sages can be expanded into a much larger space of n coded mes-

sages. We define the maximum expansion ratio r of the high rate 

erasure resilient codes as: 
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r = n / k.  (1) 

At the time of decoding, the client receives m messages, 

where m is a number equal to or slightly larger than k, and at-

tempts to decode the k original messages from the m received 

coded messages.  

The operation of the high rate erasure resilient codes can be 

described via matrix multiplication over the Galois Field GF(p):
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where p is the order of the Galois Field, {x0, x1,
…, xk-1} are the 

original messages, {c0, c1,
…, cn-1} are the coded messages, and 

G is the generator matrix. Each original/coded messages xi /ci is

usually a long vector, consists of l GF(p) elements. When the 

client decodes from the m received coded messages, the decod-

ing operation is solving: 
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where {c’0, c’1,
…, c’m-1} are the received messages, Gm is a sub-

generator matrix formed by the m rows of the generator matrix G

that correspond to the coded messages. If the sub-generator ma-

trix Gm has a full rank k, the original messages can be recovered.  

Reed-Solomon codes use a structured generator matrix G on

GF(p) that has the property that any k rows of the generator ma-

trix G forms a k×k matrix of full rank. As a result, Reed-

Solomon codes are MDS codes with the best error-correction / 

erasure error resilience property. Traditional, the Reed-Solomon 

generator matrix G is the Vandermonde matrix: 

.

)1()1()1(

111

000

10

10

10

−−−

=

k

k

k

nnn L

MOMM

L

L

G
 (4) 

In Reed-Solomon error correction coding, it is customary to 

form a message polynomial of: 
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and represent the parity messages as: 

niifci ,,2,1),( L== . (6) 

Most Reed-Solomon error correction coding operations favor the 

polynomial representation form of equations (5) and (6). How-

ever, in high-rate erasure resilient coding, the matrix representa-

tion form of (2)-(4) is favored.  

An alternative form of Reed-Solomon codes uses the Cauchy 

matrix as the generator matrix: 

.

)1()1(

1

1)1(

1

0)1(

1

)1()1(

1

1)1(

1

0)1(

1
)1(

1

1

1

0

1

−+−+−+−

−++++++

−+++

=

knnn

kkkk

kkkk

L

MOMM

L

L

kI

G

 (7) 

With such a Reed-Solomon code, the first k messages are origi-

nal (systematic) messages (marked by the identity matrix Ik), and 

the rest n-k messages are parity (coded) messages. The Cauchy 

matrix has been used in the Galois Field in [11][12], and has 

been used to define one variant of the Reed-Solomon codes in 

[13]. In this work, we implement the Cauchy matrix based Reed-

Solomon erasure encoding/decoding operation more efficiently 

with scalar vector multiplication/addition operation described in 

Section 3.2. 

It can be shown that for both Vandermonde and Cauchy 

based Reed-Solomon codes, the maximum expansion ratio r

achievable is p/k. Thus, on GF(p), a (p,k) Reed-Solomon code 

can be constructed that generates at most p coded messages, 

regardless of the number of original messages k.

In most high rate erasure resilient coding applications, the 

equation (2) is usually not used to generate all the coded mes-

sages; rather, it defines a coded message space. The encoded 

messages are generated on-demand and one-by-one, for each 

multicast/broadcast message, each backup storage unit, or each 

hosting server. In the high rate erasure resilient decoding, k

coded messages are collected, with each coded message identifi-

able through the row index of the generator matrix. The erasure 

resilient decoding operation then consists of the inversion of the 

sub-generator matrix Gk, and the multiplication of the inverse 

with that of the coded messages: 
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3. EFFICIENT IMPLEMENTATION OF REED-

SOLOMON HIGH RATE ERASURE RESILIENT CODES  

In this section, a number of technologies that speed up the 

Reed-Solomon high rate erasure encoding/decoding operations 

are examined. The first technology is the calculation of the direct 

inverse of the sub-generator matrix Gk using the structure of the 

Reed-Solomon generator matrix. The second technology speeds 

up the scalar vector multiplication and addition operations, 

which are the dominant operations in the erasure encod-

ing/decoding operation.  

3.1. Direct inverse of the sub-generator matrix 

3.1.1 For Vandermonde matrix based Reed-Solomon codes 

Let us assume that the k coded messages received are indexed 

as {t0, t1,
…, tk-1}. The sub-generator matrix Gk are: 
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In [10], the inverse of the Vandermonde matrix can be calculated 

via: 
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and aj is the coefficient of the polynomial: 
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The direct inverse computation includes1 k2/2 operations to cal-

culate the coefficients aj (equation (15)), k2 operations to calcu-

late the coefficients di (equation (13)), k2 operations to calculate 

the elements of the matrix Q (equation (14)), and k2 operations 

to calculate the elements of the matrix QD-1 (equation (10)). The 

computation complexity of the direct inverse is thus 4.5k2, com-

pared with k3 if the inverse is calculated via Gaussian elimina-

tion.

3.1.2 For Cauchy matrix based Reed-Solomon codes 

The Cauchy matrix based Reed-Solomon codes consist of 

systematic and parity codes. Among the k received coded mes-

sages, let us assume k-s messages are original. For convenience, 

we move all the original messages to the front. Let the row index 

of the received original messages be {rs, rs+1,
…, rk-1}, and the 

row index of the received parity messages be {t0, t1,
…, ts-1}. Let 

the row index of the remaining non-received original messages 

be {r0, r1,
…, rs}. The received coded messages form the sub-

generator matrix Gk:
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where A is a s×(k-s) Cauchy matrix of the form: 
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and B is a s× s Cauchy matrix of the form: 
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1 For GF(2q), the addition is a bitwise xor operation, the multi-

plication requires three table lookups and one addition. Because 

the Galois Field multiplication is a dominating factor in compu-

tation complexity, we mainly count the number of multiplica-

tions in the computation of the complexity. 

The inverse of the sub-generator matrix Gk can be calculated as:  
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Cauchy matrix has the property that the determinant of an ar-

bitrary Cauchy matrix B can be calculated as: 
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Using the cofactor, the inverse of the Cauchy matrix can be 

directly calculated as: 
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The direct inverse computation2 includes 4s2 operations to calcu-

late the coefficient am, bm, em, fm, s2 operations to calculate the 

coefficient di,j, the computation complexity of the directly in-

verse is thus 5s2, compared with s3 if the inverse is implemented 

via Gaussian elimination. 

3.2. Galois Field scalar vector multiplication and addition 

High rate erasure resilient coding usually involves relatively 

long original and coded messages, e.g., 1 kilo byte(KB) each. 

During the encoding/decoding operations, the message can be 

considered as a long vector of GF(p) elements. Therefore, one of 

the key operations in the erasure encoding/decoding is the fol-

lowing scalar vector multiplication and addition operation: 

y = y + α⋅x, (27) 

where x and y are vectors of l GF(p) symbols, α is a scalar num-

ber in GF(p). In erasure encoding, each erasure coded message 

generated via equation (2) requires k scalar vector multiplication 

and addition operations. The erasure decoding operation of (8) 

can be accomplished by first calculating the elements of the in-

verse of the sub-generator matrix Gk
-1, and then calculating the 

decoded messages via k2 scalar vector multiplication and addi-

tion operations. In Cauchy matrix based Reed-Solomon decod-

ing, we may first calculate the elements of the matrix B-1 and A

in equation (19), and then use k⋅s scalar vector multiplication 

and addition operations to calculate the decoded messages.  

The scalar vector multiplication and addition operation can 

be efficiently calculated in GF(p) as follows: 

2 Because Gk
-1 is to be multiplied with the received messages, 

which involve a scalar vector multiplication and addition opera-

tion, only log(ak), log(bk), log(ek), log(fk) and log(di,j) need to be 

computed.  
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Preparation. Establish two lookup tables on GF(p) for the loga-

rithmic operation: 

 log(x)=log x, (28) 

and the exponential operation:  

 exp(x)=ex. (29) 

On GF(p), each lookup tables contains p elements and only 

needs to be pre-calculated once.  

Step 1. Test if α is 0.  

If α is 0, the result of the computation (27) is simply y. This 

step is not always necessary, as certain coefficients of the gen-

erator matrix and its inverse are guaranteed to be non-zero, and 

need no testing. 

Step 2. Calculate log(α).

Step 3. Perform multiplication and addition for each symbol xi

and yi of the message x and y. First, we test if the symbol xi is 0. 

For non-zero symbol xi, the following operation is performed to 

update yi:

yi = yi + exp( log(α)+log(xi)). (30) 

The operation of (30) can be accomplished via a logarithmic 

table lookup, an addition, an exponential table lookup, and an 

addition on the Galois Field. Note on GF(2p), the final operation 

is a bitwise xor operation. 

4. EXPERIMENTAL RESULTS 

We implement the high rate Reed-Solomon erasure resilient 

code based on the Vandermonde and the Cauchy matrix on 

GF(216). We select the order of the Galois Field to be 216 because 

of the following. The order p of a general Galois Field must 

satisfy: 

p = zq, (31) 

where z is a prime, and q is a positive integer. Nevertheless, 

GF(zq) with z other than 2 does not correspond well with infor-

mation representation in the computer and requires additional bit 

to represent the coded message, and thus should not be used. In 

GF(2q), each Galois Field symbol can be represented as a q-bit

binary. The symbol in GF(2q) with q=8, 16 and 32 can be espe-

cially efficiently processed, as it corresponds to a byte (8 bit), a 

word (16 bit), and a double word (32 bit) in the computer. 

GF(28) can only accommodate a maximum of 28=256 coded 

messages, which is a little bit small for many high rate erasure 

coding applications. In GF(232), the logarithmic and exponential 

lookup table contains 232 entries, and thus cannot be used. In 

stead, the multiplication operation on GF(232) has to be factored 

into 6 multiplication operations on the subfield GF(216), which 

increases the computation complexity. Thus, we implement the 

high rate Reed-Solomon erasure resilient code on GF(216). The 

maximum coded message space is 216=65536. This leads to a 

maximum expansion ratio of 4096 if the number of original mes-

sages is 16, and a maximum expansion ratio of 256 if the number 

of original messages is 256. Both of which are large enough for 

most applications. The logarithmic and exponential lookup ta-

bles on GF(216) contain 65536 entries, and are 128KB each.  

We test our implementation by running erasure encoding and 

decoding operations, and observe the amount of data that can be 

processed each second. The parameter of the erasure resilient 

code is the following. The length of the message is 1KB, and the 

number of the original messages is 16, in accordance with the 

distributed content hosting application of [7]. Our implementa-

tion achieves an encoding/decoding throughput of 25MB per 

second, (i.e., 200Mbps) on a Pentium 2.8Ghz computer. Alterna-

tively speaking, if the computer network operates at 10Mbps, the 

erasure encoding/decoding operation only takes 5% of the CPU 

load. We do not observe significant performance difference be-

tween the Reed-Solomon codes based on the Vandermonde ma-

trix and the Cauchy matrix.  

In [13], Bloemer et. al. implement a Reed-Solomon erasure 

encoding/decoding operation via xor operation. Their implemen-

tation requires on average q xor operation for each multiplication 

operation on GF(2q). In comparison, through the scalar vector 

multiplication and addition operation of (27), the corresponding 

operation of our implementation takes one comparison to zero, 

two table lookups, one addition and one xor operation. We have 

implemented the algorithm of [13], and found that it achieves a 

throughput of 16MB per second. Our implementation is 50% 

faster than the implementation of [13].  
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