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ABSTRACT

In this paper we prove that trace-orthogonal space-time coding
provides a necessary and sufficient condition for information loss-
less coding in a multiple access system, where each user encodes
its own symbols independently of the other users. Then, we show
that the sub-optimal MMSE decoder can be implemented very
simply as a set of scalar decoders and we prove that, under the
assumption of using the (sub-optimal) MMSE decoder, the trace-
orthogonal design with scaled unitary coding matrices yields min-
imum BER for each user.

1. INTRODUCTION

The major challenge in the design of space-time encoders is the
search for the (possibly best) trade-off between three fundamental
aspects: bit rate, bit error rate, and receiver complexity. Orthogo-
nal space-time coding (OSTC) is known for achieving maximum
diversity gain and minimum receiver complexity, but at the ex-
penses of rate [1]. BLAST techniques are known for achieving
maximum rate, but at the expenses of diversity. Recently, space-
time encoding strategies guaranteeing full rate and full diversity
were established in [2] and [3]1. The detector guaranteeing the
full-diversity performance is the maximum likelihood (ML) detec-
tor. However, ML for full rate systems can be too complicated
to implement, especially when the MIMO dimensions or the sym-
bol constellation size are not too small. Sphere decoding can be
used instead, but its complexity is still quite high. In an effort to
simplify the detector as much as possible, but still guaranteeing
appreciable BER performance, in [4], [5] it was proposed a trace-
orthogonal design (TOD). In this paper we consider the multiple
access channel and we prove that necessary and sufficient condi-
tion for having an information lossless transmission consists in en-
coding the information symbols using TOD, for any given channel
realization. Furthermore, we show that, under the assumption of
using the (suboptimal) MMSE detector, TOD with scaled unitary
matrices minimizes the BER for each user.

2. MULTI-USER TRACE-ORTHOGONAL DESIGN

We consider a multiple access system composed of N users, each
with nT transmit antennas, and an access point (AP), with nR re-
ceive antennas. Let us assume that user k encodes its own ns

This work has been supported by the project IST-2001-32549 - RO-
MANTIK - funded by the European Community.

1Maximum rate here is meant to be a symbol rate equal to nT symbols
per channel use (pcu). This should not be confused with the information
rate used in [6] to derive the optimal rate-diversity trade-off.

(complex) symbols sk(j), j = 1, . . . , ns, through the following
space-time linear encoder:

Xk =

ns�

j=1

Ak(j)sk(j) (1)

where {Ak(j), j = 1, . . . , ns} is the set of nT × Q complex ma-
trices assigned to user k. A multi-user (MU) space-time encoder
is an MU Trace-Orthogonal Design (TOD), if the matrices Ak(j)
satisfy, for each user k,

〈Ak(j), Ak(m)〉 := tr(AH
k (j)Ak(m)) = δjm, (2)

where δjm denotes the Kronecker symbol. Furthermore, we say
that the encoding is a Unitary TOD (UTOD) if the following addi-
tional condition holds true

Ak(j)AH
k (j) =

1

nT
InT

, j = 1, . . . , ns. (3)

The shift and multiply bases proposed in [4] are an example of
UTOD.
Denoting by Hk the nR × nT channel matrix characterizing the
link between the k-th user and the access point (AP), and by x̃k

the vector transmitted from the k-th user, the received vector, at
the AP, is

ỹ =

N�

k=1

Hkx̃k + ṽ := Hx̃ + ṽ, (4)

where H := [H1, . . . , HN ], x̃ := [x̃T
1 , . . . , x̃T

N ]T , and ṽ is the
noise vector, assumed to be zero mean, circularly symmetric com-
plex Gaussian, with covariance matrix σ2

vI . We will refer to (4) as
the uncoded system.

Let us consider now a system with space-time encoding, where
the channels Hk are assumed to be constant over Q successive
channel uses (quasi-static fading). If each user transmits the matrix
Xk, built as in (1), the received matrix is

Y =
N�

k=1

HkXk + V := HX + V , (5)

where H is as in (4), X := [XT
1 , . . . , XT

N ]T , and V (nR ×Q) is
the received noise matrix. We will refer to (5) as the coded system.
Applying the vec(·) operator to (1), we obtain

xk = vec(Xk) =

ns�

j=1

vec(Ak(j))sk(j) := F ksk, (6)

where F k(Q·nT×ns) is the matrix whose j-th column is vec(Ak(j))
and sk = [sk(1) · · · sk(ns)]

T . To guarantee symbol recovery, the
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matrices F k must be full column rank, i.e. rank(F k) = ns. This
means that the following inequality must be satisfied

ns ≤ Q · nT . (7)

Applying the vec(·) operator2 to (5), and using (1) and (6), we get

y = vec(HX ) + vec(V ) = (IQ ⊗ H)ΠFs + v, (8)

where Π is the following permutation matrix

Π = [IQ ⊗ P 1 IQ ⊗ P 2 · · · IQ ⊗ P N ], (9)

with P k defined as

P k = uk ⊗ InT
, (10)

where uk is the k-th unit vector3 in C
N , that is uk(j) = δkj

(j = 1, . . . , N), and F is the following block diagonal matrix

F :=

�
�����

F 1 0 · · · 0

0 F 2

. . .
...

...
. . .

. . .
...

0 · · · · · · F N

�
����� (11)

where blocks F k are defined in (6). Finally, vector s is defined as
s = [sT

1 · · · sT
N ]T .

3. INFORMATION LOSSLESS MULTI-USER CODING

In this section we prove under which conditions the multi-user
space-time coded system (5) is information lossless, i.e. it yields
the same capacity as (4). More specifically, we prove the following
important result:

Theorem 1. Let us assume that: i) the receiver has perfect knowl-
edge of all channels; ii) each user has no channel knowledge; iii)
the transmit power of each user is upper bounded by PT ; iv) differ-
ent users encode their symbols independently of each other; v) the
transmitted symbol vectors sk have covariance matrix PT

nT
I . Un-

der the previous assumptions, the coded system (5) has the same
mutual information as the uncoded system (4), for any channel
realization H, if and only if FF

H = I .

Proof. (Sufficiency) Under the previous assumptions, the aggre-
gate mutual information exchanged between the whole set of users
and the receiver of the uncoded system is

I(x̃; ỹ|H) = log
���I + γHH

H
��� = log

���I + γH
H

H

��� , (12)

where γ = PT /(nT σ2
v) is the average SNR per receiving antenna.

Let us compute now the aggregate mutual information of the coded
system (5) or, equivalently, (8), that for any given realization of the
channel H, is

I(X ; Y |H)cod =
1

Q
log
���I + γ(I ⊗ H)ΠFF

H
Π

H(I ⊗ H
H)
��� ,

(13)

2If A(r × t), X(t × p), and B(p × s) are matrices, we have
vec(AXB) = (BT

⊗ A) vec(X), where ⊗ is the Kronecker product.
3It is a column vector.

where factor 1/Q accounts for the Q channel uses. Since FF
H =

I , (13) becomes (note that ΠΠ
H = I)

I(X ; Y |H)cod =
1

Q
log
���I + γ(I ⊗ H)(I ⊗ H

H)
��� . (14)

Using the property (A ⊗ B)(C ⊗ D) = (AC ⊗ BD), (14)
becomes

I(X ; Y |H)cod =
1

Q
log
���I + γ(I ⊗ HH

H)
���

=
1

Q
log
���I ⊗ (I + γHH

H)
��� = log

���I + γHH
H
��� ,(15)

where we used the identity |In ⊗ M | = |M |n. Comparing (15)
with (12), we realize that I(X ; Y |H)cod = I(x̃; ỹ|H). Since this
identity holds true for any channel realization H, this proves the
sufficiency statement.

(Necessity) Due to space limitations, the proof of necessity will be
carried out only in the case nR ≥ N · nT . We start now from

I(X ; Y |H)cod = I(x̃; ỹ|H) ∀H ∈ C
nR×N·nT
. (16)

From (12) and (13), using the identity |I + AB| = |I + BA|,
(16) can be rewritten as���IQ·N·nT

+γ(IQ ⊗ H
H

H)ΠFF
H
Π

H
��� = ���IN·nT

+ γH
H

H

���Q
(17)

∀H ∈ C
nR×N·nT , where the dimensions of the identity matrices

involved are explicitly indicated. Since (17) holds for any realiza-
tion of the channel, it is satisfied, in particular, for channel matrices
Ĥλ such that

γĤ
H

λ Ĥλ = λIN·nT
λ ∈ R

+ (18)

where R
+ ≡ [0, +∞). Note that such realizations always exist

since we have assumed nR ≥ N · nT . Substituting Ĥλ in (17),
we get���IQ·N·nT

+ λΠFF
H
Π

H
��� = |IN·nT

+ λIN·nT
|Q λ ∈ R

+.

(19)
Since ΠFF

H
Π

H is Hermitian positive semidefinite, let us indi-
cate with ϕk (k = 1, . . . , N · Q · nT ) its eigenvalues. Note that
ϕk ∈ R

+ and this property will be useful later. Hence, (19) can be
written

N·Q·nT�
k=1

(1 + λϕk) = (1 + λ)N·Q·nT λ ∈ R
+. (20)

Equation (20) is an identity between polynomials of degree NQnT

in the indeterminate λ (it holds for any λ ∈ R
+). But the two poly-

nomials coincide if and only if the coefficients of the correspond-
ing powers of λ are equal. Using this fact, equating in particular
the coefficients of λN·Q·nT and λ form (20) we get

N·Q·nT�
k=1

ϕk = 1 and

N·Q·nT�
k=1

ϕk = N · Q · nT . (21)

Since ϕk ∈ R
+ it is easy to verify4 that (21) jointly imply	

N·Q·nT�
k=1

ϕk


 1
N·Q·nT

=
1

N · Q · nT

N·Q·nT�
k=1

ϕk, (22)

4If x ∈ R
+ then x = 1 ⇐⇒ x1/n = 1 for n ∈ N.
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but the well know relation between geometric and arithmetic means
implies that (22) holds if and only if all the ϕk are equal. This im-
plies, using (21), that ϕ1 = · · · = ϕN·Q·nT

= 1, which is equiva-
lent to state5 that ΠFF

H
Π

H = IN·Q·nT
. Since Π is invertible,

this last condition is equivalent to

FF
H = IN·Q·nT

, (23)

which proves the necessity for the subclass of channels satisfy-
ing (18). But (23) is also the condition that guarantees (16) for
all channel matrices, as it follows from the proof of sufficiency.
Hence, we conclude, a fortiori, that (23) is a necessary condition
for all channel matrices. The proof is thus complete.

Taking into account the structure of F in (11), it is evident that
(23) is equivalent to say

F kF
H
k = IQ·nT

, k = 1, . . . , N. (24)

Condition (24) holds true only if F k(Q ·nT ×ns) is full row rank,
that is only if

ns ≥ Q · nT . (25)

Combining (25) with (7), we arrive at the following equality

ns = Q · nT , (26)

which is equivalent to say that the rate of the code, defined as
R = ns/Q is equal to nT , for all the users. This means that all
users must use a full-rate code. Moreover, condition (26) forces
F k to be square and this, together with (24), implies that F k is
unitary. This is a strong result that allows us to fully characterize
the encoding matrices Ak(j) (j = 1, . . . , ns). In fact, the generic
element {F H

k F k}i,j of the matrix product F H
k F k can be written

as

vecH(Ak(i)) vec(Ak(j)) = tr(AH
k (i)Ak(j)) = δij (27)

where vecH(A) vec(B) = tr(AHB) was used. The last equality
leads to the trace-orthogonality condition (2).

Thus, combining (26) and (27) we can summarize the results
of this section in the following statement: a space-time coding
strategy for multiple access systems is information lossless if and
only if each user uses a full-rate Trace-Orthogonal Design.

4. MMSE DECODING

Maximum Likelihood decoding is the optimal procedure, but it
suffers from exponential complexity. Sphere-Decoding could be
used, but its complexity is still quite high. It is then important to
analyze the performance of sub-optimal decoders. We consider the
minimum mean square error (MMSE) receiver, which derives first
a soft estimate of the transmitted symbols and then it takes a hard
decision, based on those estimates. In the sequel, we will show
that TOD leads to very simple scalar MMSE decoding.

We derive the MMSE estimator from vector model (8) assum-
ing that s ∼ CN (0, σ2

sI), v ∼ CN (0, σ2
vI), and noise and sig-

nals are independent. Under these assumptions, the MMSE esti-
mator is linear and assumes the following simple expression

ŝk(j) = tr
�
A

H
k (j) P

H
k W Y

�
, (28)

5The identity matrix is the only Hermitian matrix with all the eigenval-
ues equal to 1.

where ŝk(j) is the estimate of the j-th symbol transmitted by the
k-th user and P k is defined as in (10); the matrix W is the same
for all the users and is equal to

W =

�
H

H
H +

1

γ
IN·nT

�
−1

H
H , (29)

with γ = σ2
s/σ2

v . The role of matrix P k is to extract from W the
subset of rows that is relevant for the k-th user. In particular, using
Matlab notation, P kW = W ((k − 1) · nT + 1 : k · nT , :).
The main feature of (28) is low complexity. In fact, if we neglect
the computation of the inverse in (29), which has to be done only
once every channel coherence time, the complexity of the estima-
tor is comparable to the ML detector used for orthogonal design
[1], but with the advantage of Trace-Orthogonal Design of being
full rate. The price paid for having this low complexity is that
MMSE is a sub-optimal detector for TOD.

Let us consider now the BER performance of the MMSE detector,
in case of BPSK modulation. We prove that TOD, with unitary
matrices, minimizes the BER. Similar results were proven, in the
single user case, in [7], but considering the MSE averaged over the
channel realizations. Here, we do not take any channel average
and we prove that TOD with unitary matrices minimizes the BER
for any channel realization and for every user.

The MMSE estimate is affected by inter-symbol interference (ISI)
and multiuser interference (MUI) and thus the exact BER deriva-
tion is not simple. However, invoking the central limit theorem,
when ns and/or N are sufficiently large, one can get a fairly good
approximation of the final BER by modeling ISI and MUI as addi-
tive complex Gaussian noise. Within the limit of such an approx-
imation the error probability for the j-th symbol of the k-th user,
conditioned on the channel realization, can be expressed as

P
(k)
ε,j =

1

2
erfc

�
�
�

SINR
(k)
j

2

�
� , (30)

where SINR
(k)
j is the signal-to-interference-plus-noise ratio on the

j-th symbol for the k-th user, defined as

SINR
(k)
j =

σ2

signal
(k)
j

σ2

int
(k)
j

+noise
(k)
j

(31)

where σ2

signal
(k)
j

is the variance of the useful component in ŝk(j),

whereas σ2

int
(k)
j

+noise
(k)
j

is the variance of the ISI, MUI and noise

contained in ŝk(j). Considering now the average probability of
error for the k-th user

P
(k)
ε =

1

2ns

ns	
j=1

erfc

�
�
�

SINR
(k)
j

2

�
� , (32)

it is interesting to investigate if there is any subclass of TOD that
minimizes (32). With this objective in mind, let us consider the
covariance matrix of the estimation errors for the k-th user, that is

K
(k)
ε = σ2

s



Ins − F

H
k (IQ ⊗ P

H
k WHP k)F k

�
, (33)
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where W is defined in (29). In (33), the diagonal entries are the
mean square errors σ

2(k)
ε,j (j = 1, . . . , ns) and are given by

σ
2(k)
ε,j = σ2

s − σ2
s tr
�
A

H
k (j)P H

k WHP kAk(j)
�

. (34)

Note that σ2(k)
ε,j depends only on the encoding matrix with the same

indices k and j. It is possible to prove that σ
2(k)
ε,j is related to

SINR
(k)
j through the following relation

SINR
(k)
j =

σ2
s

σ
2(k)
ε,j

− 1 . (35)

From (33), exploiting again the identity F kF H
k = I , the sum of

all MSE’s is
ns�

j=1

σ
2(k)
ε,j = tr(K(k)

ε ) = σ2
s

�
ns − Q · tr(P H

k WHP k)
�
.

(36)
The last term in (36) does not depend on the encoding matrices.
Thus, (36) shows the invariance of the sum of all MSE’s with re-
spect to the choice of the matrices Ak(j), provided that TOD is
used. This result is important since allows us to characterize the
minimizers for (32). In fact, substituting (35) in (32), we get

P
(k)
ε =

1

2ns

ns�
j=1

erfc

��
σ2

s

2σ
2(k)
ε,j

−
1

2

�
. (37)

Let us consider now the function erfc

�	
σ2

s

2x
− 1

2



that appears

in (37). This is a convex function of x. Hence, applying Jensen’s
inequality to (37) leads to

P
(k)
ε ≥

1

2
erfc

��
σ2

s

2
ns

�ns

j=1 σ
2(k)
ε,j

−
1

2

�
, (38)

with equality if and only if all the σ
2(k)
ε,j (for j = 1, . . . , ns) are

equal. But, thanks to (36), the term in the denominator is constant
over the encoding matrices Ak(j). This implies that, for each
channel realization, (38) is the minimum achievable average BER
for the k-th user. In particular it is reached if and only if σ

2(k)
ε,1 =

· · · = σ
2(k)
ε,ns , that is, if and only if (see (34)), for any realization of

the channel

tr
�
P

H
k WHP kAk(j)AH

k (j)
�

= Ck j = 1, . . . , ns (39)

where Ck is a constant independent of j. It is possible to prove
that a necessary and sufficient condition for (39) to be true, for any
channel realization, is

Ak(1)AH
k (1) = · · · = Ak(ns)A

H
k (ns) =

1

nT
InT

, (40)

that is, the encoding is a Unitary TOD. In particular, (40) is satis-
fied if Ak(j) (j = 1, . . . , ns) are scaled unitary matrices.
Since MMSE is clearly sub-optimal, in Fig.1 we compare the BER,
averaged over 10, 000 independent channel realizations, obtained
with full rate Unitary TOD, using the shift-and-multiply bases of
[4], setting nT = 2 and nR = 4, 5 and 6 for a two-user system.
Every user is transmitting at full-rate, i.e. nT symbols per chan-
nel use so that the aggregate rate is N · nT . We can see that, for

−6 −4 −2 0 2 4 6 8 10 12
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Fig. 1. Average BER obtained with full rate unitary TOD, using
shift and multiply bases and ML (dashed line) or MMSE (solid
line) decoding.

nR = 2nT , the MMSE decoder has a considerable loss with re-
spect to ML, but, as soon as nR increases with respect to N · nT ,
the loss decreases. Considering the huge difference in complexity
between the MMSE and the ML decoders, TOD is then an inter-
esting candidate for multi-user systems, provided that the access
point has a sufficient number of receive antennas.
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