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ABSTRACT

Space-time transmit structures for multi-antenna systems
have received considerable interest. Circulant structures
were among the first space-time coding techniques ever
used for multiple-input multiple-output (MIMO) systems
due to their simplicity and full rate. The fact that a circu-
lant matrix is diagonalized by the discrete Fourier transfor-
mation matrix suggests that the circulant structure can be
combined with an inverse fast Fourier transform (IFFT) at
the transmitter and a fast Fourier transform (FFT) at the re-
ceiver. Using this method, the spatial mixing effect of the
MIMO channel is decoupled but the diversity gain is lost.
To recover the diversity advantage, we propose to spread
the transmitted symbols over the diagonalized channel using
the constellation rotation matrix for signal diversity designs.
After spreading, every symbol experiences all the compo-
nents of the frequency counterpart of the channel vector
which makes our scheme provide full diversity. The pro-
posed scheme is full rate and can be easily applied to any
number of transmit antennas. Our simulation results show
that the performance of our scheme is close to the perfor-
mance of the ideal orthogonal space-time code and much
better than the conventional circulant space-time code.

1. INTRODUCTION

Space-time transmit structures are very critical for multi-
antenna systems and have attracted extensive research inter-
est. The orthogonal space-time block code (OSTBC) is one
of the most important space-time structures. The OSTBC
was first introduced in [1] for two transmit antennas and
was then extended to a general number of transmit anten-
nas in [2]. The orthogonality in the code enables maximum
likelihood (ML) detection based only on linear processing.
However, it was shown that there is no complex orthogonal
space-time design that provides full diversity and full rate
(1 symbol per channel use) for more than two antennas. A
rate loss of one-fourth or more is needed to keep the orthog-
onality and full diversity.

Space-time structures have also been proposed in a vari-
ety of other prior works (see for example the discussion and

references in [3]). Circulant structures were among the first
space-time coding techniques ever used for Multiple-Input
Multiple-Output (MIMO) systems due to their simplicity
and full rate [4, 5]. It is can be easily applied to any number
of transmit antennas without any rate loss and design effort.
Due to its special structure, a very important property of
circulant matrix is that it can be diagonalized by the Fourier
transformation matrix.

In this paper, we first combine the circulant structure
with inverse fast Fourier Transform (IFFT) and fast Fourier
transform (FFT) to utilize that special property of circulant
matrix. By taking the IFFT at the transmitter, sending the
circulant matrix through the multiple antenna channel, and
taking the FFT at the receiver side, the spatial mixing effect
of flat MIMO channel is eliminated. Similar to Orthogonal
Frequency Division Multiplexing (OFDM), every symbol
is affected by one element of the FFT vector of the chan-
nel. But there is a spatial diversity loss because of the same
reason that OFDM loses the multipath diversity. To recover
the diversity gain, we propose to spread the symbols before
IFFT by a spreading matrix. The constellation rotation ma-
trix in the signal diversity designs [6, 7] can be used here
as spreading matrix to achieve full diversity. After spread-
ing, every symbol experiences all the frequency coefficients
of the channel vector. And the nonzero minimum produce
distance property of the spreading matrix used here secures
the full diversity property of our scheme. The scheme is al-
ways full rate and can be easily extended to any number
of tansmit antennas without any design effort. Our simula-
tion results on Quadrature Phase Shift Keying (QPSK) and
16 Quadrature Amplitude Modulation (16QAM) constella-
tions show that the performance of our scheme is close to
the performance of ideal orthogonal space-time coding and
better than the conventional circulant matrix code scheme.

The outline of the paper is as follows. Section 2 de-
scribes the signal model and some space-time block code
background. The proposed space-time transmision scheme
is discussed in Section 3. The simulation results are pre-
sented in Section 4. Section 5 contains a concluding discus-
sion.
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2. PRELIMINARIES

2.1. Signal Model

For notational simplicity we consider a Multiple-Input
Single-Output (MISO) channel with Nt transmit antennas
and one receive antenna; extending the results in this paper
to multiple receive antennas is straight forward.

A flat Rayleigh fading MISO channel can be described
by a Nt × 1 channel vector h = [h1, . . . , hNt ]

T , where hn

is the fading coefficient between the nth transmit antenna
and the receive antenna. We further assume that the chan-
nel is slowly time-varying so that h is constant during one
code block. The elements of h are independent, identically
distributed (i.i.d.) complex Gaussian random variables.

When a T × Nt space-time block signal X is transmit-
ted, we receive

y = Xh + w, (1)

where T is the number of time slots, y is the T × 1 received
signal, and w is zero-mean, white, complex Gaussian noise
with variance N0/2 per real and imaginary dimension. The
total average transmitted power over a time slot is defined

as Et = tr
(
XHX

)
/T , where tr (·) denotes the trace.

2.2. Space-Time Block Code

Most of the space-time code designs can be seen as matrix
coding. A block of p symbols s is coded into a T ×Nt space
time matrix X . The rate of this code is R = p/T symbols
per channel use.

Generally a linear complex space-time block code is a
linear function of the symbols sk, k = 1, . . . , p, and can be
written as

X =
p∑

k=1

Xk(s(r)
k , s

(i)
k ) =

p∑
k=1

Aks
(r)
k +

p∑
k=1

Bks
(i)
k (2)

where both Ak and Bk are matrices with complex entries,
s
(r)
k and s

(i)
k are the real and imaginary part of sk which is

from the complex constellation A.
Transmit diversity gain Dt is one of the most important

features of a space time code. Under the assumptions given
in Section ??, Dt of a given STBC with maximum likeli-
hood decoding is given as [8]:

Dt = min
s �=v;s,v∈Ap

rank(X(s) − X(v)). (3)

The maximum Dt achievable for a MIMO system with Nt

transmit antennas is Nt.
Also the coding gain G of the code is given by the de-

terminant criterion [8]:

G = min
s �=v;s,v∈Ap

det(X(s)−X(s))H(X(s)−X(v)) (4)

where det(·) means determinatant.

3. THE SPACE-TIME TRANSMISION SCHEME
BASED ON CIRCULANT MATRIX

3.1. Combining Circulant Structure with IFFT/FFT

A N × N circulant matrix is one having the form

C =

⎡
⎢⎢⎢⎣

c0 cN−1 . . . c1

c1 c0 . . . c2

...
. . .

. . .
...

cN−1 . . . c1 c0

⎤
⎥⎥⎥⎦ , (5)

where each column is a cyclic shift of the previous column.
It is obvious that C is completely specified by its first col-
umn. So by C(c) we denote the circulant matrix whose first
column is c.

It is known that a circulant matrix can be diagonalized
by the Fourier transformation matrix. Therefore, matrix-
vector multiplication can be written as

C(c)v = ifft (fft(c) � fft(v)) , (6)

where ifft(·) and fft(·) denote the IFFT and FFT transform,
� is the componentwise product of two vectors. Based on
that property, we can decouple the spatial mixing effect of
multiple transmit antennas channel by combining circulant
structure with IFFT/FFT.

First the symbol vector s of length Nt is transformed
intof =ifft(s) by IFFT. Then a circulant matrix X = C(f)
is constructed fromf and transmitted through the channelh.

y = Xh + w (7)

Due to the circulant structure of X , we have

y = ifft(fft(f) � fft(h)) + w (8)

= ifft (s � fft(h)) + w. (9)

So after the FFT operation on y, we get

z = fft(y) = s � fft(h) + fft(w). (10)

Similar to OFDM, every symbol of s fades according to
one corresponding element of the FFT vector of the channel.

3.2. The Spreading Matrix

Unfortunately, the transmitting model in (10) suffers a di-
versity loss for the same reason that OFDM loses multi-
path diversity. Since every symbol now only experiences
one component of the FFT vector of the channel. To recover
the diversity gain, we propose to spread the symbols first
before the IFFT transform, that is to multiply the symbol
vector by a spreading matrix Q which gives

d = ρQs, (11)
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Fig. 1. Block diagram of the proposed space-time transmision scheme for Nt = 4

where ρ is the normalization coefficent that makes the total
tranmitting power over a time slot equal to the symbol en-
ergy of the constellation Es i.e., Et = Es. In Fig. 1 we show
a diagram of the proposed space-time transmission scheme
for Nt = 4.

The transmission relation between s and the received
signal z after the FFT changes into following:

z = ρ diag(h̃)Qs + w̃ (12)

= ρ diag(Qs)h̃ + w̃ (13)

where h̃ = fft(h), w̃ = fft(w), and diag(a) denotes the
diagonal matrix with vector a on its diagonal line.

The spreading matrix needs to be designed to recover
the diversity loss. Due to the fact that i.) h̃ = fft(h) is still
an i.i.d. complex Gaussian random vector when h is i.i.d.
complex Gaussian, and ii.) the Parseval’s Theorem, the rank
criterion in [8] can be applied to transmission model (12).
The proposed scheme will achieve full diversity when

min
s �=v

rank{diag(Q(s − v))} = Nt. (14)

Since the rank of a diagonal matrix is nothing but the num-
ber of nonzero entries along the diagonal, the full diversity
requirement for the spreading matrix can be expressed as

|∆(s,v)
i | �= 0,∀i ∈ [1, . . . , Nt],∀s �= v; s,v ∈ ANt , (15)

where ∆(s,v)
i is the ith element of ∆(s,v) =

[∆(s,v)
1 , . . . ,∆(s,v)

Nt
]T = Q(s − v).

In fact, this criterion is equivalent to the nonzero min-
imum product distance criterion in signal space diversity
designs [6, 7] due to statistical and energy equivalence of h̃
and h. Therefore precoding or constellation rotation matri-
ces proposed for those problems can be used as the spread-
ing matrix achieving full diversity in our scheme.

Here, we use the unitary precoding matrix proposed in
[7] as the spreading matrix

Q = F T
Nt

diag
(
1, α, . . . , αNt−1

)
, (16)

where F Nt is the FFT matrix with (m, n)st entry given by
N

−1/2
t exp(j2π(m−1)(n−1)/Nt). When Nt is a power of

2, α is selected as α = exp(jπ/(2Nt)). For any Nt which

is not a power of 2, α is selected such that the minimal poly-
nomial of α over the algebraic field Q(j) has degree greater
than or equal to Nt. For examples, when Nt = 3, α is se-
lected to be exp(jπ/9); when Nt = 5, α is selected to be
exp(jπ/25). This design meets the full diversity criterion
regardless of the constellation and can be constructed for
any value of Nt without design effort [7].

It can be seen that the resulting scheme can be easily
applied to any number of transmit antennas. The proposed
scheme also achieves full diversity without rate loss.

3.3. Symbol Detection at the Receiver

The transmission model between s and the received signal
after the FFT can be expressed as follows:

z = diag(h̃)Qs + w̃. (17)

According to this model and assuming perfect channel
knowledge, there are several methods for symbol detection
at the receiver side. Maximum likelihood decoding can be
employed to detect s optimally, but the detection complex-
ity increases exponentially with Nt.

Alternatively, the sphere decoding algorithm [9] can be
applied to achieve near-optimium performance. Due to the
spreading nature of our scheme, the parallel interference
cancellation in CDMA can also be used to do the detection,
but has worse performance because of error propagation.

4. SIMULATION RESULTS

In this section, we provide simulation results for the pro-
posed scheme and compare it with the ideal OSTBC, the
DAST code [10], and the circulant code [5]. In all simula-
tions, we assume the channel to be quasistatic as previously
mentioned and i.i.d. complex Gaussian with variance one.

In the first simulation, we consider the case with Nt = 3
transmit antennas, one receive antenna, and QPSK constel-
lation. The symbol error rate (SER) performances of the
proposed scheme using ML decoding is shown in Fig. 2.
We also plot the performance of ideal OSTBC which can be
seen as a performance bound because no full-rate complex
orthogonal design exists for Nt > 2. Our performance is
much better than the conventional circulant code and very
close to the ideal OSTBC.
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Fig. 2. Symbol error rate vs Es/N0 for Nt = 3, QPSK

0 5 10 15 20
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Es/N0

S
ym

bo
l E

rr
or

 R
at

e

N
t
 = 4, N

r
 = 1, i.i.d Gaussian Channel, QPSK, Sphere decoding

Our scheme
DAST code
Circulant Code
Ideal OSTBC

Fig. 3. Symbol error rate vs Es/N0 for Nt = 4, QPSK

Fig. 3 provides simulation results for Nt = 4 and QPSK
constellation. The results for Nt = 4 and 16QAM constel-
lation is shown in Fig. 4. It is also compared with another
full rate DAST code. In all these simulations our scheme
has very close performance to ideal OSTBC.

5. CONCLUSION

In this paper, we proposed to combine the circulant ma-
trix structure with IFFT/FFT and spreading for space-time
transmission in MIMO. The proposed scheme is rate one
with full transmit diversity and can be easily applied to any
number of transmit antenna. Simulation results on QPSK
and 16QAM show that the performance of our scheme is
close to the performance of ideal OSTBC and outperforms
the conventional circulant space-time code.
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