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ABSTRACT

The design of a linear space-time code with full rate, large diver-
sity product, and non-vanishing minimum determinant of code-
words continues to attract great attention. However, in most avail-
able no-vanishing determinant space-time codes for three, four,
and six transmitter antennas, the average power at each layer is
different, which results in a high peak to average power ratio. In
this paper, a new cyclic algebraic space-time design scheme is pro-
posed and the optimal codes in this class are provided by using
some specific cyclic field extensions. Our proposed codes not only
include the available non-vanishing determinant cyclotomic space-
time codes for three, four, and six transmitter antennas, but also
have the desirable property that the optimal codes can be achieved
with the same average power at each layer.

1. INTRODUCTION

Linear space-time block code designs based on algebraic field ex-
tensions have recently attracted great attention, see for example
[1]- [9], due to the possibility of systematic constructions of full
diversity and high data rate codes. Diagonal algebraic space-time
block codes were first proposed in [3], where an n-dimensional di-
agonal space-time code diag([y1, y2, · · · , yn]) was generated by
[y1, · · · , yn]T = G[x1, · · · , xn]T , with matrix G and transmitted
symbols x1, x2, · · · , xn being properly chosen based on algebraic
extension theory to achieve full diversity. The idea behind the di-
agonal algebraic space-time code can be tracked back to [1, 2],
where the full diversity multi-dimensional signal constellation de-
signs in both Rayleigh fading and additive Gaussian noise channel
were considered. However, the symbol rate for the above diagonal
space-time code design is one per channel use. In [6], a full diver-
sity space-time code for two transmitter antennas was proposed,
where the symbol rate reached two per channel use. By employing
algebraic number theory and threaded/multi-layer codes [7], more
general full diversity and high symbol rate space-time code designs
were proposed in [4, 6–8]. Meanwhile, another type of full diver-
sity and high rate space-time code was also presented [5] based on
cyclic field extensions and division algebras. In the early studies
of this topic, the structure of code designs with high (full) rate and
full diversity received more attention than the high diversity prod-
uct. In most existing codes, the minimum determinant of non-zero
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codewords, which is the minimum determinant of any two differ-
ent codewords, vanishes as the symbol constellation size increases.
Other space-time codes with a full symbol rate and high diversity
product have been recently generated in [11–14]. These codes not
only have high diversity products, but also have the non-vanishing
determinant property; i.e., the minimum determinant does not de-
crease as the symbol constellation size increases. Although the
codes in [11, 13] for two transmitter antennas have the same av-
erage powers at different layers, the cyclotomic space-time codes
in [14] and [12] for three, four and six transmitter antennas have
different average powers at different layers; i.e., a higher peak to
average power ratio.

In this paper, we propose a more general full diversity and full
rate linear space-time code design with the non-vanishing determi-
nant based on some specific cyclic field extensions, which is called
a cyclic algebraic space-time code design. This class of cyclic al-
gebraic space-time codes includes all the cyclotomic space-time
codes developed in [12] and [14] for three, four, and six transmit-
ter antennas. In addition, the optimal cyclic algebraic space-time
codes with the largest diversity products were constructed with the
same average power at each layer. 1

The following notations are used throughout this paper: cap-
ital English letters, such as X and G: space-time codeword or
matrix; Lt: number of transmitter antennas; N: natural num-
bers; Z: ring of integers; Q: field of rational numbers; C: field
of complex numbers; φ(n): Euler function of positive integer
n; ζm = exp

(
j 2π

m

)
; K, F : general fields; F(β): field gener-

ated by β based on field F; (K/F, β, σ): cyclic field extension
K/F with K = F(β), and σ of the generator of cyclic Galois
group Gal(K/L); X(K/F, β, σ, ρ): space-time code generated
with cyclic field extension (K/F, β, σ), 1, ρ, · · · , ρn−1 are the
numbers used for adjusting at different layers of the code.

2. MOTIVATION AND PROBLEM DESCRIPTION

Before providing the cyclic algebraic space-time code design, we
first review cyclotomic space-time designs, based on which most
of full rate non-vanishing determinant linear space-time codes are
developed.

1At the time of the submission of this paper, the authors learned that
G. Rekaya, J. C. Belfiore and E. Viterbo recently also developed a non-
vanishing determinant space-time code design for three, four and six trans-
mitter antennas with the same average power at different layers [15].
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2.1. Full Rate Cyclotomic Space-Time Codes Designs

In this subsection, we recall cyclotomic lattices, cyclotomic space-
time codes and some of their fundamental properties in [1, 2, 9].
For two positive integers m and n, let N = mn and Lt = φ(N)

φ(m)
.

The variable Lt corresponds to the number of transmitter antennas
in a space-time code. There are totally Lt distinct integers li, 1 ≤
i ≤ Lt, with 0 = l1 < l2 < · · · < lLt ≤ n − 1 such that
1+ lim and N are co-prime for any 1 ≤ i ≤ Lt, (see for example
p. 75 of [18]). With these Lt integers and N = mn, we define
an Lt × Lt matrix Gm,n = (ζ

(1+lim)�
N )0≤i≤t,1≤�≤Lt . It can

be verified that Gm,n is unitary when n = Lt. We now define
cyclotomic lattices.

Definition 1 An Lt dimensional cyclotomic lattice ΓLt(Gm,n) is
a set of Lt dimensional points [y1, · · · , yLt ]

T such that

[y1, · · · , yLt ]
T = Gm,n[x1, · · · , xLt ]

T , xl ∈ Z[ζm]. (1)

Following the structure of threaded space-time codes [7], a general
multi-layer cyclotomic space-time code is defined as follows.

Definition 2 Let Lt be the number of transmitter antennas and
ΓLt(Gml,nl) be an Lt-dimensional cyclotomic lattice given in
Definition 1. Let ρ1, · · · , ρLt be Lt fixed complex numbers. Then,
a multi-layer cyclotomic space-time code is defined as

⎡
⎢⎢⎢⎣

ρ1y1(1) ρ2y2(1) · · · ρLt−1yLt−1(1) ρLtyLt(1)
ρLtyLt(2) ρ1y1(2) · · · ρLt−2yLt−2(2) ρLt−1yLt−1(2)

...
...

...
...

...
ρ2y2(Lt) ρ3y3(Lt) · · · ρLtyLt(Lt) ρ1y1(Lt)

⎤
⎥⎥⎥⎦(2)

where [yl(1), · · · , yl(Lt)]
T is a point in cyclotomic lattice

ΓLt(Gml,nl) with yl1(l2) = σl2(xl1), l ≤ l1, l2 ≤ Lt and σl are
the Lt embeddings of Q(ζmn) to C that is fixed on Q(ζm) for l =
1, · · · , Lt. This multi-layer cyclotomic space-time code is denoted
by X(ρ1Gm1,n1 , · · · , ρLtGmLt

,nLt
). An L-layer (1 ≤ L ≤ Lt)

cyclotomic space-time code is defined as a multi-layer cyclotomic
space-time code X(ρ1Gm1,n1 , · · · , ρLtGmLt

,nLt
) when ρl = 0

for l > L and is denoted by X(ρ1Gm1,n1 , · · · , ρLGmL,nL).

2.2. Problem in the Cyclotomic Space-Time Code Designs

The key to designing a full rate cyclotomic space-time code is to
find a proper cyclotomic field extension Q(ζmn)/Q(ζm) in (2)
for given Lt and ρl, l = 1, · · · , Lt, such that the resulting code
achieves full diversity and a large diversity product. From the early
studies, we know that there are infinite ways of determining the
values of m, n, and ρl to generate full diversity full rate space-time
codes. However, most of these codes do not have a large diversity
product and the minimum determinant of codewords decreases to
zero very rapidly as the constellation size of the codewords in-
creases. Recently, the generation of large diversity product space-
time codes with a non-vanishing determinant has received much
attention. The vital point to design this type of codes is to find a
proper field extension K/F and ρl, l = 1, · · · , Lt, such that the
determinant of each codeword belongs to the same lattice. The
codewords provided in [11–14] have the property that F = Q(ζ4)
or Q(ζ3) = Q(ζ6), ρl ∈ Z[ζ4] or Z[ζ3] = Z[ζ6], and the deter-
minant of each codeword belongs to Z[ζm]. However, in the code
design of [12] and [14], ρl = ρl, l = 1, · · · , Lt, with |ρ| > 1.

Therefore, |ρl| takes different values for different l; i.e., the av-
erage powers of the codewords at different layers are different.
This results in a high peak to average power ratio. A close ex-
amination of the code design in [12, 14] reveals that the field ex-
tension Q(ζmn)/Q(ζm) based on minimal polynomial xn − ζm,
m = 3, 4, or 6, and ρl may not be a good choice. In this pa-
per, we develop a code design using a more general field extension
K/Q(ζm) with the minimal polynomial xn−α for α ∈ Z[ζm] and
ρl. The resulting new space-time codes have non-vanishing deter-
minants with the same average power at each layer; i.e., |ρl| = 1,
for 3, 4 and 6 transmitter antennas.

3. FULL RATE CYCLIC ALGEBRAIC SPACE-TIME
CODES FOR 3, 4, AND 6 TRANSMITTER ANTENNAS

The existing cyclotomic code designs are obtained based on the
cyclic field extension (Q(ζmn)/Q(ζn), ζmn) with the minimal
polynomial xn − ζm, m = 6 or m = 3. In this section, we
generalize the cyclic field extension to (Q(ζmn)/Q(ζn), β) with
a minimal polynomial xn − α, and βn = α ∈ Z[ζm]. We find
optimal full rate space-time codes for three, four, and six transmit-
ter antennas in this class. The results show that optimal full rate
space-time codes can be achieved with |ρ| = 1, which means that
the average powers at different layers of the codewords are iden-
tical; i.e., a lower peak to average power ratio than that achieved
by the cyclotomic space-time codes. Before providing the optimal
codes, we introduce some concepts and results.

Definition 3 [18] A Galois extension K/F is called cyclic if the
Galois group Gal(K/F) is a cyclic group.

By the cyclic extension theory we have the following proposition.

Proposition 1 [18] Let F be a field containing a primitive nth
root of unity, and let K = F( n

√
α) for some α ∈ F. Then K/F is

a cyclic Galois extension. Moreover, m = [K : F] is equal to the
order of the coset αF∗n in the group F∗/F∗n, and min(F, n

√
α) =

xm − d for some d ∈ F.

From Proposition 1, we know that for a field F containing a
primitive nth root of unity and its extension F[ n

√
α] with a min-

imal polynomial xn − α over F, K/F is a cyclic Galois exten-
sion of dimension n. Therefore, there are a number of n embed-
dings σl = σl of K to C such that σ(x) = x for x ∈ F and
σ( n

√
α) = ω n

√
α = ζn

n
√

α.

Definition 4 An n-dimensional cyclic algebraic space-time code
X(K/F, β, σ, ρ) based on a cyclic field extension K/F with β =
n
√

α is a set of n × n matrices with the form of

X=

⎡
⎢⎢⎢⎣

x1 ρx2 · · · ρn−2xn−1 ρn−1xn

ρn−1σ(xn) σ(x1) · · · ρn−3σ(xn−2) ρn−2σ(xn−1)
...

...
. . .

...
...

ρσn−1(x2)ρ2σn−1(x3)· · ·ρn−1σn−1(xn) σn−1(x1)

⎤
⎥⎥⎥⎦(3)

where xl, l = 1, · · · , n, are determined by xl =
∑n

k=1 xk,lβ
k−1

with xk,l being algebraic integers in F. While ρ in (3) can be any
complex number, in this paper, it is chosen from algebraic integers
in field F.

Similar to (2), the cyclic algebraic space-time code defined in (3)
can be rewritten as points of a complex lattice [yl(1), · · · , yl(n)]T
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with yl(k) = σl−1(xk) is a point in complex lattice Γn(Gn,β)
with a generating matrix Gn,β over Z[ζn] for l = 1, · · · , n,

Gn,β � (ζi�
n )0≤i≤(n−1),1≤�≤ndiag(1, β, · · · , βn−1) (4)

Therefore, [y1(1), y1(2), · · · , y1(n), ρy2(1), ρy2(2), · · · , ρy2(n),
· · · , ρn−1yn(1), ρn−1yn(2), · · · , ρn−1yn(n)] can
be considered as a point of larger complex lat-
tice Γnn(Gn,β , ρGn,β , · · · , ρn−1Gn,β), with a gen-
erating matrix G(Gn,β , ρGn,β , · · · , ρn−1Gn,β) over
Z[ζn] × Z[ζn] × · · ·Z[ζn]︸ ︷︷ ︸

n

,

G(Gn,β , ρGn,β ,· · · ,ρn−1Gn,β) = diag(Gn,β , ρGn,β , ρn−1Gn,β)

The absolute value of the determinant
| det(G(Gn,β , ρGn,β , · · · , ρn−1Gn,β))| of the generating
matrix G(Gn,β , ρGn,β , · · · , ρn−1Gn,β) is

| det(G(Gn,β , ρGn,β , · · · , ρn−1Gn,β))|=| det(Gn)|n(ρβ)n2(n−1)/2.

As a result, for a given integer n, we can compare
two n-dimensional cyclic algebraic space-time codes
X(K1/F1, β1, σ1, ρ1) and X(K2/F2, β2, σ2, ρ2) with the
following criterion by using the results developed in [14].

Lemma 1 For any two n-dimensional cyclic algebraic space-
time codes X(K1/F1, β1, σ1, ρ1) and X(K2/F2, β2, σ2, ρ2), the
former is better than the latter if dmin(K2/F2, β2, σ2, ρ2) =
dmin(K1/F1, β1, σ1, ρ1) and |β1ρ1| ≤ |β2ρ2|, where

dmin(K/F, β, σ, ρ) = min | det(X)|
X �=0,X∈X(K/F,β,σ,ρ)

(5)

is called the minimal determinant of code X(K/F, β, σ, ρ).

In a special case where F = Q(ζn) and α = ζn, the cyclo-
tomic space-time code is a cyclic algebraic space-time code. For
all the cyclotomic space-time codes with non-vanishing determi-
nants, F = Q(ζ3) = Q(ζ6), or F = Q(ζ4). In this paper, we
only consider the special case where F = Q(ζ3) = Q(ζ6), or
F = Q(ζ4). In the following, we will design optimal cyclic alge-
braic space-time codes for three, four, and six transmitter antennas
over F = Q(ζ3) = Q(ζ6) or F = Q(ζ4) under the diversity prod-
uct criterion.

Definition 5 [12] Let K be a field and F a cyclic extension of
degree d of F, σ be the generator of Galois cyclic Galois group
Gal(K/F). Take γ ∈ F∗. The algebra A = (K/F, σ, γ) generated
by K and an element e is called a cyclic algebra, where ed = γ,
and e�x̄ = x̄�σ(e), for any x̄ ∈ K. This algebra A = (K/F, σ, γ)
can be written as A = (K/F, σ, γ)

.
= K⊕ e � K⊕ · · · ⊕ ed−1 � K.

This algebra can be constructed as a subalgebra of Md(K), the
d-dimensional matrix algebra over K for l = 0, · · · , d − 1 by
setting

e =

(
0(d−1)×1 I

γ 01×(d−1)

)
x̄ = diag(σl(x)) (6)

From the definitions of cyclic algebra and cyclic algebraic space-
time codes, we know that an n-dimensional cyclic algebraic
space-time code X(K/F, β, σ, ρ) is a degree n cyclic algebra
(K/F, σ, ρn). In the design and proof of the optimality of a cyclic
algebraic space-time code, we need the following lemma.

Lemma 2 [12], [17] A cyclic algebra in Definition 5 is a division
algebra if and only if γ, γ2, · · · , γd−1 are not algebraic norms of
elements in K(γ, γ2, · · · , γd−1).

3.1. Optimal Cyclic Algebraic Space-time Code for Three
Transmitter Antennas

In this subsection, we assume that F = Q(ζ3) and K = F(β) is
a cyclic field extension of degree 3 for some β with β3 = α ∈
Z[ζ3]. Now let us consider field extension towers Q ⊂ Q(ζ3) ⊂
Q(ζ3, β). Then, any z ∈ Z[ζ3, β] can be written as z = z1+z2β+
z3β

2 ∈ Q(ζ3, β) = F(β), where zk ∈ Z[ζ3], k = 1, 2, 3. Notice
that NQ(ζ3,β)/Q(ζ3)(z) =

∏3
k=1 σk(z), where σk, k = 1, 2, 3, are

the three embeddings of Q(ζ3, β) to C that is fixed over Q(ζ3)
with σk(β) = ζk−1

3 β. Hence, from the definition of the relative
algebraic norm we have

NQ(ζζ3,β)/Q(ζ3)(z) = z3
1 + β3z3

2 + β6z3
3 − 3β3z1z2z3. (7)

If we let β = 21/3, then we know from the algebraic number
theory that Q(ζ3, 2

1/3)/Q(ζ3) is a cyclic field extension of degree
3. In the following we prove that ζ3 and ζ6 are not the algebraic
norm of some integer of Q(ζ3, 2

1/3) over Q(ζ3).

Theorem 1 [16] For any x, y ∈ Z[ζ3, 2
1/3],

if NQ(ζ3,21/3)/Q(ζ3)(x) = ζ6NQ(ζ3,21/3)/Q(ζ3)(y),
NQ(ζ3,21/3)/Q(ζ3)(x) =ζ3NQ(ζ3,21/3)/Q(ζ3)(y), or

NQ(ζ3,21/3)/Q(ζ3)(x)=ζ2
3NQ(ζ3,21/3)/Q(ζ3)(y) then, x = y = 0.

The proofs of all theorems in this paper are provided in [16]. Sim-
ilarly, we can prove that number 2 is not the algebraic norm of
some integer of Q(ζ3, ζ6) = Q(ζ18) over Q(ζ3).

Theorem 2 [16] For any x, y ∈ Z[ζ18], (x, y ∈ Z[ζ9]), if
NQ(ζ18)/Q(ζ6)(x) = 2NQ(ζ18)/Q(ζ6)(y) (NQ(ζ9)/Q(ζ3)(x) =
2NQ(ζ9)/Q(ζ3)(y)), then, x = y = 0.

For any cyclic algebraic space-time codeword X ∈
X(Q(ζ3, β)/Q(ζ3), β, σ, ρ) with the following form

X =

⎡
⎣ x ρy ρ2z

ρ2σ(z) σ(x) ρσ(y)
ρσ2(y) ρ2σ2(z) σ2(x)

⎤
⎦ , (8)

where x =
∑3

l=1 xlβ
l−1, y =

∑3
l=1 ylβ

l−1, z =
∑3

l=1 zlβ
l−1,

with xl, yl, zl ∈ Z[ζ3], β
3 ∈ Z[ζ3], ρ

3 ∈ Z[ζ3], we can prove that
its determinant belongs to Z[ζ3]; i.e.,

Theorem 3 [16] The determinant det(X) of matrix X with the
form of (8) belongs to Z[ζ3], i.e., det(X) ∈ Z[ζ3].

Furthermore, we can prove the following result.

Theorem 4 [16] Under the diver-
sity product criterion, space-time codes
X(Q(ζ3, 2

1/3)/Q(ζ3), 2
1/3, σ, ζ9), X(Q(ζ3, 2

1/3)/Q(ζ3), 2
1/3,

σ, ζ18), X(Q(ζ9)/Q(ζ3), ζ9, σ, 21/3), X(Q(ζ18)/Q(ζ6), ζ18, σ, 21/3)
are the optimal full rate cyclic space-time codes for three trans-
mitter antennas with the minimal determinant 1.

Remarks: The cyclic algebraic code X(Q(ζ9)/Q(ζ3), ζ9, σ,

21/3) is a cyclotomic space-time code, but
X(Q(ζ3, 2

1/3)/Q(ζ3), 2
1/3, σ, ζ9) is not. Although they

have the same diversity product, i.e., the same performance under
the diversity product criterion, the former with ρ = 21/3 > 1
has different average power at each layer and the latter with
|ρ| = |ζ9| = 1 has the same average power at each layer.
Therefore, the latter has a lower peak to average power ratio.
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Fig. 1. Codeword error probability of cyclic algebraic space-time
code and cyclotomic space-time with three transmitter and two re-
ceiver antennas

3.2. Cyclic Algebraic Space-Time Code for 4 and 6 Transmit-
ter Antennas

Similar to Theorem 4 for the three transmit antenna case, we have
the following non-vanishing determinant theorems for four and six
transmitter antennas.

Theorem 5 [16] X(Q(ζ4, β)/Q(ζ4), (2+j)1/4, σ, ζ16) is an op-
timal cyclic algebraic space-time code for four transmitter anten-
nas with full rate, full diversity non-vanishing determinant 1 and
its average power at each layer is identical.

Theorem 6 [16] X(Q(ζ6, β)/Q(ζ6), (2 + ζ6)
1/6, σ, ζ36) is an

optimal cyclic algebraic space-time code for six transmitter an-
tennas with full rate, full diversity, determinant non-vanishing and
identical average power at each layer.

4. SIMULATION RESULTS

In this section we consider a MIMO system with three transmit-
ter antennas and two receive antennas. We compare the error
performance of the space-time code X(Q(ζ9)/Q(ζ3), ζ9, σ, (3 +

exp(jπ/3))1/3) proposed in [12] with our proposed code
X(Q(ζ3, 2

1/3)/Q(ζ3), 2
1/3, σ, ζ9). While both have non-

vanishing determinants, the latter has a lower peak to average
power ratio than the former, since |ρ| = |(3+exp(jπ/3))1/3| > 1
in the former code. Whereas |ρ| = |ζ9| = 1 in the latter. More-
over, according to the diversity product criterion, the proposed
code also has better codeword error performance. Our simulation
results depicted in Fig.1 show that our new code achieves about
2dB gains over the one proposed in [12].

5. CONCLUSION

A systematic non-vanishing determinant space-time code design
has been proposed using some cyclic field extensions. Based on
the diversity product criterion, the optimal space-time codes for
three, four and six transmitter antennas have been obtained. We
have proved that these optimal codes have the same average power
at each layer and, subsequently a low peak to average power ratio.
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