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ABSTRACT

Impulsive, non-Gaussian noise is prevalent in wireless environ-
ments. We adopt an impulsive noise model over multi-input-multi-
output (MIMO) channels and discuss receiver design and code de-
sign over MIMO channels with impulsive noise. We derive the
code design criterion for the so-called genie-aided receiver and
suboptimal receiver, both of which yield criteria identical to [11]
when the noise is not impulsive. We propose a maximum a pos-
teriori (MAP) receiver, whose performance can be tightly lower
bounded by the genie-aided receiver. We simplify the optimal
MAP receiver by an approximation and show that for all cases of
practical interest, only 2 terms in the approximation is enough to
get near-optimal performance.

1. INTRODUCTION

Impulsive, non-Gaussian noise is prevalent in many communica-
tion environments due to a variety of sources, such as man-made
electromagnetic interference, atmospheric noise, or ignition noise
[1, 2]. In such wireless environments, the performance is degraded
both by fading, and impulsive noise. To combat fading, antenna ar-
rays are often used, giving rise to MIMO systems. The statistical
description of impulsive noise over MIMO systems are considered
in [3], where a correlated impulsive noise model is derived for 2
closely spaced antennas. In [4], adaptive diversity receivers are
proposed to adapt to the unknown parameters of the noise process,
where the impulsive noise is modelled as independent over both
space and time. The same model is used in [5], where the perfor-
mance of DPSK with Equal Gain Combining (EGC) and Selection
Combining (SC) over Ricean fading channels is considered. In
[6], an adaptive receiver is proposed for correlated non-Gaussian
noise. In [8] and [9], the performance of Maximum Ratio Com-
bining (MRC), EGC, SC and Post Detection Combining (PDC)
over Rayleigh fading channels are considered under two different
impulsive noise models, which were originally proposed in [7].

In this paper, we consider the receiver design for MIMO chan-
nels with impulsive noise, for which we introduce a simplified
impulsive noise model by adopting a specific noise correlation in
space and in time for the Class A model of Middleton [1, 2]. Us-
ing this model, we derive code design criteria for space-time coded
systems over impulsive noise channels for the first time in the lit-
erature and show that the code design criteria are the same as the
Gaussian noise case. The paper is organized as follows. In Section
2, we propose the impulsive noise model for MIMO channels. In
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Section 3, we derive the code design criterion for both a genie-
aided receiver and suboptimal receiver, where the former is robust
to impulsive noise while impossible to implement, and the latter
is easy to implement but vulnerable to impulsive noise. Hence,
in Section 4, we consider the MAP receiver, whose performance
is very close to the genie-aided receiver while not requiring the
knowledge of conditional noise variances at each time instance, as
the genie-aided receiver does. To reduce its high computational
complexity, we simplify the MAP receiver by an approximation,
and we show that for all practical purposes, 2 terms in the approx-
imation are enough to get a near-optimal performance.

2. SYSTEM MODEL

We consider a wireless communication system where the base-
station is equipped with Nt transmitting antennas and the mobile is
equipped with Nr receiving antennas. We consider the following
MIMO flat-fading channel model:

Y =
√

ρHS + W, (1)

where Y is the Nr × Ts matrix of received signals, and Ts is the
length of the transmitted data block; H is an Nr × Nt matrix,
with independent and identical distributed (iid) complex Gaussian
entries with mean zero and variance 1; the average SNR per re-
ceiving antenna is denoted by ρ; S is the Nt × Ts transmitted data
block; W is the Nr × Ts additive impulsive noise matrix, with a
distribution that will soon be specified.

We next derive the impulsive noise model. Since the impul-
sive nature of the noise is due to the presence of interference from
various sources, we first make the following assumptions on the
interference using some ideas from [10]: 1) the distance between
any pair of receiving antennas is small compared to the distance
from the interfering source to the receiving antenna. This means
that the distance from a specific interfering source to each an-
tenna is approximately the same; 2) each receiving antenna re-
ceives interference from the same interfering sources. Based on
these two assumptions, the instantaneous interference at each an-
tenna is approximately the same. We further assume that the re-
ceived interference plus a background Gaussian noise at the lth

antenna is given by wl(t) = wl,g(t) + wl,i(t), where wl,g(t) is
the background white Gaussian noise component, and wl,i(t) is
the received interference, which is the impulsive component and
assumed independent of wl,g(t). The average power ratio of the
Gaussian component to the impulsive component is denoted by
T . The impulsive component wl,i(t) can be expressed as a series
of impulses wl,i(t) :=

∑∞
k=−∞ Ckδ(t − tk), where Ck are iid
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Gaussian random variables with zero mean, and tk is assumed to
be generated by a Poisson point process with average rate λ.

The entries of W in (1) are the output of a matched filter
(MF) with sampling frequency 1/Tb. In order to get a simple and
tractable model for the impulsive noise, we assume that the MF
has a rectangular and time limited impulse response with a sup-
port of Tb. This means that the received signal is integrated over
non-overlapped intervals, hence the noise at the output of the MF
are independent over time [5]. Let wl[j] := [W]l,j be the jth

noise sample for the lth antenna. The pdf of wl[j] can be written
as the canonical Middleton’s Class A model as,

p(wl[j]) =

∞∑
m=0

αm

πσ2
m

exp

(
−|wl[j]|2

2σ2
m

)
, (2)

where A := λTb is the average number of impulses during a length
Tb interval, and the number of impulses during the jth length Tb

interval, Pj , is a Poisson distributed random variable with parame-
ter A, also called impulsive index; αm := exp(−A)Am/m! is the
probability that Pj takes the value of m; and σ2

m := σ2(m/A +
T )/(1 + T ). Note that even though (2) is not Gaussian, it can
be viewed as conditional Gaussian, which means that wl[j] condi-
tioned on the Poisson random variable Pj is Gaussian with mean
zero, and conditional variance vl,j := var(wl[j]|Pj).

We have so far specified the pdf of each noise sample in (2).
To set a full description of W, we use the fact that all receiving
antennas receive the same interference at any given time, but the
interference is independent across time. This means that vl,j =
vk,j ∀ l, k, and also vl,j is independent of vl,i when i �= j. We can
then summarize our model as dependent in space and independent
in time. Let wj := [w1[j], w2[j], ..., wNr [j]]T be the jth column
of W, we can write their joint pdf as,

p(wj) =

∞∑
m=0

αm

πNr σ2Nr
m

exp

(
−

∑Nr
l=1 |wl[j]|2

σ2
m

)
. (3)

where w1[j], w2[j], ..., wNr [j] are statistically dependent but un-
correlated [7]. Recall that during one data block, the noise samples
W := [w0,w1, ...,wTs−1], with pdf

p(W) =

Ts−1∏
j=0

+∞∑
m=0

αm

πNr σ2Nr
m

exp

(
−||wj ||2

σ2
m

)
. (4)

From the above analysis, we conclude that the conditional vari-
ances at any time j are not dependent on the antenna, vj := vl,j =
σ2(Pj/A+T )/(1+T ), j = 0, ..., Ts − 1, and for different times
j, vj are independent.

3. CODE DESIGN CRITERIA

Now that we have specified the impulsive noise model that we will
adopt, we proceed to design the receiver and the space-time code
to combat the fading and impulsive noise. We assume through-
out that H is known at the receiver, and start with the genie-aided
receiver for which the conditional noise variances are assumed
known at the receiver. Since this assumption amounts to know-
ing how many impulsive interferers there are at a given interval,
in practice, it is impossible to implement the genie-aided receiver.
However, the performance of the genie-aided receiver is mathe-
matically tractable and can serve as a benchmark for the perfor-
mance of any realistic receiver that does not have the knowledge
of conditional variances. In particular, as we will show in Section

4, the performance of MAP receiver is tightly lower bounded by
the genie-aided receiver, which also motivates us to analyze the
performance of genie-aided receiver.

3.1. Genie-aided Receiver

Since the receiver has the knowledge of the conditional variances
v0, v1,..., vTs−1 at each time instance, we can normalize it with
the conditional variances at both sides of the equation to make the
normalized noise variance to be 1. This is equivalent to right mul-
tiplying (1) by a diagonal matrix V := diag[1/

√
v0, 1/

√
v1, ...,

1/
√

vTs−1]. Hence we can rewrite (1) as

YV =
√

ρHSV + WV. (5)

Since WV is now Gaussian, the optimal decision rule is to mini-
mize the Euclidean distance:

Ŝ = argmin
S

||YV −√
ρHSV||2. (6)

Consider the PEP that the transmitted signal S is decoded as
S′,

P (S → S′|H,V) = Q

(
ρ

√
||H(S − S′)V||2

2

)
, (7)

which can be upper bounded using the Chernoff bound,

P (S → S′|H,V) ≤ exp

(
−ρ

||H(S − S′)V||2
4

)
. (8)

Since the elements of H are i.i.d Gaussian distributed random vari-
ables, taking expectation with respect to H, we get

EHP (S → S′|H,V) ≤
Nt∏
i=1

(
1

1 + λi
ρ
4

)Nr

, (9)

where λi is the ith eigenvalue of B := (S − S′)VV
H

(S − S′)H .
Ignoring the 1 term in the denominator, (9) can be further upper
bounded by

EHP (S → S′|H,V) ≤
r∏

i=1

λ−Nr
i

(ρ

4

)−rNr

, (10)

where r is the rank of B. From (10), we can see that to obtain full
diversity of NtNr , we need B to be a full rank matrix. Since V
is diagonal with nonzero diagonal elements, if S − S′ is full row
rank, then so is B. So the code design criterion turns out to be
the same as [11]: to achieve the maximum diversity of NtNr , we
require S − S′ to be full row rank for any pair of codewords S and
S′.

We note that if S − S′ is unitary, the eigenvalue λi of B is
given by the diagonal elements of VVH , which is 1/vi (i =
0, ..., Ts − 1). In this case, (9) can be written as

EHP (S → S′|H,V) ≤
Nt∏
i=1

(
1 +

ρ

4vi

)−Nr

. (11)

When Nr = 1, since
(
1 + ρ

4vi

)−1

is a convex function of vi, and

vi are independent for different i, taking expectation with respect
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to vi, we get,

EH,VP (S → S′|H,V) ≤ Evi

Nt∏
i=1

(
1 +

ρ

4vi

)−1

(12)

≤
Nt∏
i=1

(
1 +

ρ

4E[vi]

)−1

=

Nt∏
i=1

(
1 +

ρ

4σ2

)−1

, (13)

where we used Jensen’s inequality and E[vi] = σ2. The right-
hand side of (13) is exactly the PEP upper bound for the Gaus-
sian noise case. We see that the PEP upper bound for the impul-
sive noise case in (12) is smaller than that for the Gaussian noise
case, which implies that the performance of the genie-aided re-
ceiver over the impulsive noise channel has a better coding gain
than the Gaussian noise case. This is not surprising since the cor-
relation of the impulsive noise in space is removed when only 1
receiving antenna is used. Moreover, the genie-aided receiver uti-
lizes the impulsive structure to decode transmitted symbols, hence
it has a better coding gain than Gaussian noise channel.

Considering now (10), and taking expectation with respect to
V, we get

EH,VP (S → S′|H,V) ≤
( ρ

4σ2

)−NtNr

, (14)

where we use the properties that vi are independent and E[vi] =
σ2. Note that (14) is independent of A or T and is the same as the
PEP upper bound at high SNR for the Gaussian noise case, which
implies that for the genie-aided receiver, the PEP will approach to
the Gaussian noise case at high SNR.

One special case which satisfies that S − S′ is unitary is Alam-
outi’s code: the 2 × 2 orthogonal space-time block code. Given
Nr = 1, Nt = 2, using Alamouti’s code and BPSK constellation,
we show in Fig. 1 the performance of the genie-aided receiver for
two different channels. We use (A, T ) = (10−4, 0.1) to repre-
sent highly impulsive channel and (A, T ) = (1, 0.1) to represent
near-Gaussian channel. We also show the upper bound in (12) for
the highly impulsive channel, and the upper bound in (13) for the
Gaussian noise channel. We see that (12) is smaller than (13), and
at high SNR, (12) approaches to (13). This corroborates our anal-
ysis that the genie-aided receiver for impulsive noise channel out-
performs that over Gaussian noise channel due to the better coding
gain. Also at high SNR, they approach to each other, as expected.

Although the genie-aided receiver has a better performance
over impulsive noise than Gaussian noise channels, it is not prac-
tical to estimate the conditional noise variances at each time in-
stance, which motivates us to look for other receivers.

3.2. Suboptimal Receiver

We would now like to discuss the receiver that is optimal over
Gaussian noise channels, which is given by,

Ŝ = argmin
S

||Y −√
ρHS||2 = argmin

st

Ts−1∑
t=0

||yt −√
ρHst||2,

(15)
where yt and st are the tth columns of Y and S respectively.
This receiver is suboptimal over impulsive noise channels, we will
now derive PEP upper bound and the code design criterion for
the suboptimal receiver. Since the conditional variances vt, (t =
0, ..., Ts − 1) are independent for different t, we get

P (S → S′|H,V) =

Ts−1∏
t=0

Q

⎛
⎝

√
ρ||H(st − s′t−1)||2

2vt

⎞
⎠
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Fig. 1. Genie-aided receiver vs. suboptimal receiver over a highly
impulsive channel and a near-Gaussian channel

≤ exp

(
−

Ts−1∑
t=0

ρ||H(st − s′t)||2
4vt

)
≤ exp

(
−ρ||H(S − S′)||2

4vmax

)
,

(16)
where vmax is the maximum conditional variance among v0, v1,
..., vTs−1. Taking expectation with respect to vmax, we get

EVP (S → S′|H,V) ≤
∞∑

m=0

P (vmax = σ2
m)

· exp

(
−ρ||H(S − S′)||2

4σ2
m

)
, (17)

where P (vmax = σ2
m) =

(∑m
k=0 e−A Ak

k!

)Ts−
(∑m−1

k=0 e−A Ak

k!

)Ts

.

Using Binomial Theorem, it can be shown that P (vmax = σ2
m) ≤

Tsαm. Taking expectation with respect to H, we get the PEP up-
per bound as

EH,VP (S → S′|H,V) ≤
∞∑

m=0

Tsαm

Nt∏
i=1

⎛
⎝ 1

1 + ψi

(
ρ

4σ2
m

)
⎞
⎠

Nr

≤
⎡
⎣(

r∏
i=1

ψi

)−Nr ( ρ

4σ2

)−rNr

⎤
⎦

⎡
⎣Ts

∞∑
m=0

(
αm

m/A+T
1+T

)−rNr
⎤
⎦ ,(18)

where ψi and r are the ith eigenvalue and rank of (S − S′)(S − S′)H

respectively. To get the highest diversity order, S − S′ needs to be
full row rank, which is the same criterion as before.

From (18), we see that the diversity order of the suboptimal
receiver is the same as that of the genie-aided receiver, and the
first term is equal to (14) if S − S′ is unitary. However, the sec-
ond term is always larger than 1, which can be easily shown us-
ing Jensen’s inequality. Hence the second term leads to a coding
gain loss, which is expected since the suboptimal receiver does
not utilize any information about the impulsive noise. In Fig. 1,
we show the simulated BER for Alamouti’s code using subopti-
mal receiver over a highly impulsive channel and a near-Gaussian
channel. We compare them with the genie-aided receiver. There
is a large gap between the genie-aided receiver and the suboptimal
receiver. In particular, a flattening of the BER curve between 10
- 30 dB for the suboptimal receiver over highly impulsive channel
can be observed. This coding gain loss can also be observed from
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Fig. 2. Comparison of MAP receiver using different M over a
highly impulsive channel and a near-Gaussian channel

the upper bound for the genie-aided receiver in (12) and the upper
bound for the suboptimal receiver in (18). When the channel is
near-Gaussian, since the suboptimal receiver is optimal for Gaus-
sian noise, the difference between the genie-aided receiver and the
suboptimal receiver is small. This phenomenon indicates that the
suboptimal receiver is in fact ineffective in combating highly im-
pulsive noise due to the large coding gain loss, which motivates
us to find the receiver that is implementable while combating the
impulsive noise effectively.

4. MAP RECEIVER

We now consider the optimal MAP receiver, which is given by

Ŝ=argmax
S

Ts−1∏
i=0

+∞∑
m=0

αm

πNr σ2Nr
exp

(
−|yi − Hsi|2

σ2
m

)
.(19)

Since (19) involves infinitely many terms, we can approximate it
by including only finite many terms. The amount of terms that is
enough to approximate (19) needs to be examined. Assume M
finite terms are added together to approximate the sum in (19), we
simulate different values for M = 1, 2, 25, over different channels
to see how large M needs to be.

Assume Alamouti’s code and BPSK signaling are used over a
highly impulsive channel and a near-Gaussian channel. The simu-
lation results are shown in Fig. 2. It is not surprising that M = 1
leads to a poor performance since it is equivalent to the suboptimal
receiver given by (15). However, when M = 2, the performance is
improved significantly, and very close to M = 25 with only 0.02
dB difference. We also note that the performance of MAP receiver
is very close to the genie-aided receiver, hence the genie-aided re-
ceiver though unrealistic provides a tight lower bound as the MAP
receiver, and can act as a good benchmark for the performance of
MAP receiver. For near-Gaussian channel, there is a small dif-
ference between M = 1 and M = 25, because the suboptimal
receiver (M = 1) is optimal for Gaussian noise case.

To implement the MAP receiver, we need to know A, T and
σ2, which are deterministic noise parameters, while the genie-
aided receiver requires vj (j = 0, 1, .., Ts − 1) at each time in-
stance, which are random variables related to the Poisson points.
As for the suboptimal receiver, although it does not require any
knowledge of the impulsive noise parameters, it is ineffective in
combating highly impulsive noise.

5. CONCLUSION

In this paper, we adopt an impulsive noise model for MIMO chan-
nels, and discuss the receiver and code design issues. We derive
the coding criterion for the genie-aided receiver and suboptimal re-
ceiver, and analyze their performance using the PEP upper bound.
The genie-aided receiver turns out to have a much better coding
gain than the suboptimal receiver, however, it is difficult to imple-
ment. While MAP receiver has a close performance to the genie-
aided receiver, and it can be simplified by an approximation which
only needs 2 terms to get near-optimal performance.
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