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ABSTRACT

The exact expression of pairwise error probabilities (PEPs) for
space-time orthogonal codes is derived for spatially and tempo-
rally correlated Rayleigh fading channels in this research. We
adopt a moment generating function approach in developing a uni-
fied framework to facilitate the evaluation of PEPs for various
types of channel correlations. Under this new framework, the com-
plexity for evaluating PEPs is greatly simplified. Moreover, the
simple expression provides valuable insights into the performance
of space-time codes in the presence of correlated fading channels.

1. INTRODUCTION

Space-Time coding (STC) has attracted a significant amount of
attention since the pioneering work by Tarokh et al. [1]. The no-
tion of super-orthogonal space-time trellis codes (STTCs) was pro-
posed in [2] to provide a wilder set of orthogonal space-time codes
originally introduced in [3]. The STC design is primarily based on
the rank and the coding gain distance criteria, which are usually
obtained from an upper bound of the pairwise error probability
(PEP). The reason of using the upper bound is that the resultant
simple expression can provide more insights into code designs.

Approaches to evaluate PEPs exactly based on the moment
generating function (MGF) have recently been proposed for some
STCs, e.g. the super-orthogonal (SO)-STTCs in [4]. However,
these exact formulas are still too complicated to be useful in code
design, and they are only valid for uncorrelated channels. Due to
some mathematical difficulties, STC is primarily designed for two
extreme cases under fast and slow fading channel assumptions, re-
spectively. For fast fading, channel coefficients are assumed to
change from symbol to symbol independently, while, for slow fad-
ing, the coefficients remain steady over the entire coding block and
change from block to block also independently. These two extreme
cases often serve as the upper and the lower performance bounds
for STCs in realistic fading channels.

It was shown in [5], among others, that STCs designed for un-
correlated fading channels have severe performance degradation
when applied to correlated channels. To provide a higher per-
formance gain, robust STC design for correlated fading channel
is necessary. This motivates us to look for an exact expression
of PEP for spatially and temporally correlated channels. To the
best of our knowledge, no similar formula has been reported, even
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thought simpler forms were obtained for simplified channel condi-
tions. Here, we investigate this problem using the MGF approach
and obtain exact PEPs for spatially and/or temporally correlated
Rayleigh fading channels when both transmit and receive anten-
nas employ uniform linear arrays (ULA). The derived expressions
of PEPs are even simpler than those given in [4] for uncorrelated
channels, thus providing useful insights into the performance of
STC over correlated fading channels.

2. SPACE-TIME BLOCK CODES AND SYSTEM MODEL

We consider signal constellations for SO-STTC in spatially and
temporally (ST) correlated Rayleigh fading channels. In this sys-
tem, there are Lt complex symbols being transmitted for each time
index n, denoted by xn = [x1(n), · · · , xLt(n)]T , while there are
Lt transmissions taking place at each time index n. As a result,
for each transmission in time n, the Lt symbols are sent through
Lt transmission antennas in different permutations with different
amounts of phase shifts. It was shown in [3] that the full-rate
(Lt ×Lt) real orthogonal design is only possible for Lt = 2, 4, 8.
For example, for Lt = 2, the transmitted signals is given by

Xn �
�

xn1 xn2

�
�
�

x1(n)ejθ(n) −x2(n)ejθ(n)

x2(n) x1(n)

�
. (1)

Each column vector of Xn corresponds to symbols being transmit-
ted in one transmission during time n, and each row corresponds
to symbols being transmitted through an antenna. Let cp,q(n)
denote the channel coefficient between the pth receive antenna,
p = 1, · · · , Lr , and the qth transmit antenna, q = 1, · · · , Lt,
at time n, and cp(n) � [cl,1(n), · · · , cl,Lt(n)] be the channel
vector corresponding to the pth receive antenna at time n. The re-
ceived signal yp,m(n) at the pth antenna for the mth transmission,
m = 1, · · · , Lt, in time n is given by

yp,m(n) = cp(n)xn,m + np,m(n),

where np,m(n) ∼ CN (0, 2N0). We define noise vector np(n) �
[np,1(n), · · · , np,Lt(n)]. The received signal for the pth antenna
at time n can be represented as

yp(n) � [yp,1(n), · · · , yp,Lt(n)] =

�
2Es

Lt
cp(n)Xn + np(n).

(2)
Concatenating the received signals from the Lr antennas, the sig-
nal matrix Yn � [yH

1 (n), · · · ,yH
Lr

(n)]H is given by

Yn =

�
2Es

Lt
CnXn + Nn, (3)
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where Cn � [cH
1 (n), · · · , cH

Lr
(n)]H and Nn � [nH

1 (n), · · · ,

nH
Lr

(n)]H . Note that, matrices M∗, MT and MH denote the
complex conjugate, transpose and Hermitian of matrix M, respec-
tively.

3. CORRELATED FADING CHANNEL MODEL

For spatially and temporally (ST) uncorrelated channel matrix Cn,
the exact PEP formula for SO-STTC codes has been derived for
both Rayleigh and Ricean fading channels in [4]. For spatially
correlated fading channels, approximate PEP evaluations have also
been widely studied, e.g., [5]. In this work, we use the channel
model developed in [5] for ULA antennas to evaluate the PEP in
fading scattering environments.

Consider one dimension ULA antennas at both the transmitter
and the receiver sides, where the far-field assumption applies. The
channel matrix can be described via the array steering and response
vectors given, respectively, by

at(θt) � [1, ej2πθt , · · · , ej2π(Lt−1)θt ]T , (4)

ar(θr) � [1, ej2πθr , · · · , ej2π(Lr−1)θr ]T , (5)

where θ represents the angle variable that is related to the phys-
ical angle measured with respect to the horizontal axis via θ =
d sin(φ)/λ, and where λ is the wavelength of propagation and d is
the antenna spacing. The channel matrix in a multipath scattering
environment can be expressed as

Cn =

L�
l=1

αl(n)ar(θr,l)at(θt,l)
T , (6)

where L is the number of paths and αl(n) is the complex Gaussian
distributed channel gain with E[αk(n)∗αl(m)] = σ2

l J0(2πfd(m−
n))δ(k − l), fd the normalized Doppler shift and

�L
l=1 σ2

l =
1/Lr . The function J0(·) is the zeroth-order Bessel function of
the first kind. For convenience, we express Cn as

Cn = ArDnAT
t , (7)

where Ar � [ar(θr,1), · · · ,ar(θr,L)], At � [at(θt,1), · · · ,

at(θt,L)] and Dn � diag{α1(n), · · · , αL(n)}.
For the PEP analysis, we need to find the covariance matrix

of the concatenated channel vector c(n) � [c1(n), · · · , cLr (n)].
By operator vec(C), we stack the columns of C to form a con-
catenated vector. Based on the identity vec(ABC) = (CT ⊗
A)vec(B), where ⊗ is the Kronecker product, we obtain

c(n) = vec(CT
n )T = vec(AtDnAT

r )T

= vec(Dn)T (AT
r ⊗ AT

t ). (8)

It can be shown that the cross-covariance matrix Rc(m − n) �
E[cH(m)c(n)] is equal to

Rc = (A∗
r ⊗ A∗

t )E[vec(D∗
m)vec(Dn)T ](AT

r ⊗ AT
t )

= Rm,n

L�
l=1

σ2
l [a∗

r(θr,l)a
T
r (θr,l)] ⊗ [a∗

t (θt,l)a
T
t (θt,l)]

� Rm,nΦc, (9)

where Rm,n � J0(2πfd(m− n)) characterizes the temporal cor-
relation and Φc �

�L
l=1 σ2

l [a∗
r(θr,l)a

T
r (θr,l)]⊗[a∗

t (θt,l)a
T
t (θt,l)]

forms the spatial correlation matrix of the channel. Note that the
rank of the spatial covariance matrix, Φc is min(L, LrLt).

4. ANALYSIS OF PAIRWISE ERROR PROBABILITIES

4.1. PEP and Moment Generating Function (MGF)

We use the maximum likelihood (ML) metric to evaluate the PEP.
Form (2), the log likelihood of the transmitted codeword X �
[x1, · · · ,xN ] of length N is given by

m(Y,X) =
N�

n=1

Lr�
p=1

‖yp(n) −
�

2Es

Lt
cp(n)Xn‖2, (10)

where Y � {Y1, · · · ,Yn} denotes the set of received signals.
Conditioned on C � {C1, · · · ,CN}, the probability of choosing�X when X was truly transmitted is given by

P (X → �X) = Pr{m(Y,X) > m(Y, �X)|C}. (11)

After some manipulations, the PEP can be shown to be

Pr(X → �X|C) =

Pr

��N
n=1

�Lr
p=1 zp(n)

�
∆n∆H

n ∆n

∆H
n 0

�
zH

p (n) < 0|C
�

, (12)

where zp(n) � [
�

2Es
Lt

cp(n),np(n)] and ∆n � Xn − �Xn. It is

clear that vector zp(n) is complex Gaussian distributed. The PEP
can be further written in matrix form as

Pr(X → �X|C) =

Pr

	
[
�

2Es
Lt

c̃, ñ]

� 
∆
∆H 
∆
∆H 0

�� �
2Es
Lt

c̃H

ñH

�
< 0|C



,

� Pr{Q(C) < 0|C}, (13)

where c̃ � [c(1), · · · , c(N)], ñ � [n(1), · · · ,n(N)], n(N) �
[n1(n), · · · ,nLr (n)] and


∆ � diag(ILr ⊗ ∆1, · · · , ILr ⊗ ∆N ), (14)

where Ip denotes the identity matrix of p × p.
Therefor, the PEP in (13) is equal to evaluating the probability

of Q(C) less than zero. Q(C) has a Gaussian quadratic form, since
vector [c̃, ñ] is zero-mean complex Gaussian distributed. Thus,
the PEP can be obtained by evaluating the residues of the moment
generating function (MGF) of Q(C) [6], which is given by

Pr(X → �X) = −Res
�

RHP

1

s
MQ(s). (15)

To this end, we have to find the covariance matrix of [c̃, ñ]. We
will focus on E(c̃H c̃) only, since c̃ and ñ are uncorrelated and
E(ñH ñ) = 2N0INLrLt . Covariance matrix Rc̃ � E(c̃H c̃) is a
block matrix with its submatrix on the nth row and the mth column
equal to [Rc̃]n,m � Rc(m − n) = E[cH(m)c(n)]. From (9),
we have [Rc̃]n,m = Rm,nΦc. Thus,

Rc̃ =

���R1,1Φc · · · R1,NΦc

...
. . .

...
RN,1Φc · · · RN,NΦc

��� � Rc ⊗ Φc, (16)

where the mth row and the nth column of the temporary covari-
ance matrix Rc is [Rc]m,n � J0(2πfd(m − n)).
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We are now ready to find the MGF of Q(C), denoted by MQ(s).
From, (13), it is given by

MQ(s) =

det

�
I + s

� �∆�∆H �∆�∆H 0

��
2Es
Lt

Rc̃ 0

0 2N0INLrLt

��−1

= det
�
I + 2Es

Lt
(s − 2N0s

2)�∆�∆H(Rc ⊗ Φc)
�−1

. (17)

The dimension of Rc ⊗ Φc is dR
�c

= N min(L, LrLt). Express-
ing �∆�∆H(Rc ⊗ Φc) = QΛQH in its singular value decomposi-
tion (SVD) form, the MGF becomes

MQ(s) = det

�
Id +

2Es

Lt
(s − 2N0s

2)Λ

�−1

, (18)

where d = min(rank(�∆), dR
�c
) is the dimension of Λ. Substitut-

ing (18) back to (15), we have

Pr(X → �X) =

d�
i=1

1	
SNR

Lt
λi(

SNR
Lt

λi + 2) + SNR
Lt

λi + 2

d

j = 1
j �= i

λi

λi − λj
, (19)

where the input signal to noise ratio (SNR) is Es
2N0

.
To put the PEP, which is a general form for spatially and tem-

porally correlated fading channels, into a proper context, we shall
elaborate the MGF in (17) for some specific types of channels.
These will be conducted in the next two subsections.

4.2. Spatially Correlated Fading Channels

We first focus on spatially correlated fading channels and discuss
two extreme cases to characterize the upper and lower performance
bounds of STCs in realistic spatially correlated channels. We present
results for these two cases using the MGF approach.
A. Fast Fading Channels

In this case, the temporal correlation matrix Rc = IN . Thus,
from (14) and (16), we have�∆�∆H(Rc ⊗ Φc)

= diag((ILr ⊗ ∆1∆
H
1 )Φc, · · · , (ILr ⊗ ∆1∆

H
1 )Φc). (20)

Substituting (20) back into (17), we obtain

MQ(s) =

N

n=1

det

�
I +

2Es

Lt
(s − 2N0s

2)(ILr ⊗ ∆n∆H
n )Φc

�−1

.(21)

Expressing (ILr ⊗ ∆n∆H
n )Φc = QnΛnQH

n , n = 1, · · · , N ,
we get Λ = diag{Λ1, · · · , ΛN}. Hence, the PEP formula (19)
directly applies to the case.
B. Slow Fading Channels

In this case, channel coefficients remain unchanged for the en-
tire block of length N . Thus, c̃ = [c(1), · · · , c(N)] = c[1, · · · , 1].
Following the same procedure from (13) to (17), one can show that
the MGF for slow fading is

MQ(s) =

det

�
I +

2Es

Lt
(s − 2N0s

2)
N�

n=1

(ILr ⊗ ∆n∆H
n )Φc

�−1

.(22)

Expressing

N

n=1(ILr ⊗ ∆n∆H
n )Φc = QΛQH and using (19)

gives the PEP for slow fading channels directly.

4.3. Temporally Correlated Fading Channels

In this case, channel coefficients are assumed to be spatially un-
correlated. Then, the cross-covariance matrix between channel
vectors cp(m) and ck(n), on the pth and kth receive antennas,
respectively, becomes

E(cp(m)Hck(n) = J0(2πfd(m − n))δ(p − k)σ2
r,pΣt,

where σ2
r,p is the channel covariance associated with the pth re-

ceive antenna, and Σt � diag{σ2
t,1, · · · , σ2

t,Lt
} is the channel

covariance matrix of the transmit antenna, with σ2
t,q being the

channel covariance associated with the qth transmit antenna. Let
c̄p = [cp(1), · · · , cp(N)] denote the channel coefficients of the
pth receive antenna for time index from 1 to N . Then, we have

E(c̄H
p c̄k) = σ2

r,pRc ⊗ Σt. Let z̄p = [
	

2Es
Lt

c̄p, n̄p], where

n̄p = [np(1), · · · ,np(N)]. We can immediately evaluate its co-
variance matrix as

E(z̄H
p z̄p) =

�
σ2

r,pRc ⊗ Σt 0
0 2N0INLt

�
. (23)

Define concatenated vector z̃ = [z̄1, · · · , z̄Lr ]. The PEP formula
(12) can be rearranged into the form of

Pr(X → �X|C) =

Pr

�
z̃

�
ILr ⊗

�
∆̄∆̄H ∆̄
∆̄H 0

��
z̃H < 0|C

�
, (24)

where ∆̄ � diag{∆1, · · · , ∆N}, which is of the Gaussian quadratic
form. By applying the property of spatial uncorrelatedness, the
MGF is given by

MQ(s) =�Lr
p=1 det

�
I + s

�
∆̄∆̄H ∆̄
∆̄H 0

�
E(z̄H

p z̄p)

�−1

=

�Lr
p=1 det

�
I + 2Es

Lt
(s − 2N0s

2)σ2
r,p∆̄∆̄H(Rc ⊗ Σt)

�−1

.(25)

Similarly, we can express σ2
r,p∆̄∆̄H(Rc ⊗ Σt) = QpΛpQ

H
p ,

p = 1, · · · , Lr , in its SVD, and have Λ = diag{Λ1, · · · , ΛLr}.
Then, formula (19) can be directly used for the evaluation of PEP
in this case.

We will present below MGFs for temporally correlated (but
spatially uncorrelated) fast and slow fading channels. These two
cases are the most widely studied cases for STC designs. Their
exact PEPs can also be found in [4] using a different MGF-based
approach.
A. Fast Fading Channels

In this case, Rc = IN . Thus, formula (25) can be simplified
to

MQ(s) =

Lr

p=1

N

n=1

det

�
I +

2Es

Lt
(s − 2N0s

2)σ2
r,p∆n∆H

n Σt

�−1

.(26)

B. Slow Fading Channels
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In this case, c̄p = [cp(1), · · · , cp(N)] = cp[1, · · · , 1]. Then,
formula (25) reduces to

MQ(s) =

Lr�
p=1

det

�
I +

2Es

Lt
(s − 2N0s

2)σ2
r,p

N�
n=1

∆n∆H
n Σt

�−1

.(27)

5. SIMULATION RESULTS

We present results for the 2 × 2 SO-STTC codes described in [2].
A rate r = 1 BPSK 2-state code (Fig. 7, [2]) was adopted in
our simulation study. The PEPs for an error event path of length
N = 2 with the all-zero path as the correct one are shown for var-
ious channel conditions. Following the setup provided in [4], the
corresponding transmitted and detected symbols were x1(1) =
x2(1) = 1, x1(2) = x2(2) = 1, x̂1(1) = 1, x̂2(1) = −1,
x̂1(2) = −1, x̂2(2) = 1 and θ(1) = θ̂(1) = 0, θ(2) = 0,
θ̂(2) = π. The numbers of transmit and receive antennas were
Lt = 2, Lr = 3, respectively. The number of transmission paths
was L = 4. For temporally correlated fading channels, the nor-
malized Doppler frequency was fd = 0.1.

First, we show the PEPs for spatially correlated fading chan-
nels in Fig. 1. Three cases are given in this figure, which are
fasting fading, temporally correlated fading and slow fading, re-
spectively. Obviously, the PEP curve of the temporally correlated
fading falls between the two extreme cases. This curve will move
up towards the curve of fast fading as fd increases and down to-
wards the curve of slow fading as fd decreases. Therefore, STC
should take the fading speed into account for realistic channels.
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Fig. 1. PEPs for spatially correlated channels, where N = 2,
Lt = 2, Lr = 3, L = 4 and fd = 0.1.

Fig. 2 presents results for two extreme cases: the space-time
correlated fading v.s. the space-time uncorrelated fading (fast fad-
ing) channels. This example is to investigate the performance of
a space-time code, which was originally designed for uncorrelated
channels, in realistic space-time correlated fading channels. The
SNR degradation is about 4dB at PEP ∼ 10−4. Thus, a space-
time code designed for correlated fading channels can potentially
provide better performance in realistic channels than one without
considering it.
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Fig. 2. Comparisons of PEPs for space-time correlated v.s. uncor-
related channels. The systems parameters are N = 2, Lt = 2,
Lr = 3, L = 4 and fd = 0.1.

6. CONCLUSION AND FUTURE WORK

Exact PEP formulas for spatially and temporally correlated fading
channels were derived in this work. Using the MGF approach, the
evaluation of a PEP can be converted to evaluating the residues of
a MGF with respect to its right half-plane poles. This technique
greatly simplifies the exact expressions of PEPs for STC design
and extends the exact evaluations of PEPs to both spatially and
temporally correlated fading channels. In the future, we will study
effective STC design for spatially and temporally correlated fading
channels based on the results derived in this work.
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