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Abstract— In this paper, a differential space-time trellis-coded scheme
based on super orthogonal space-time trellis codes (SOSTTC) is proposed.
Based on its trellis structure, a low-complexity suboptimal differential
decoder using the per-survival processing technique (PSP) is developed.
In slow fading channels, it can approach the performance of SOSTTC
with coherent decoding. Furthermore, an adaptive receiver is presented
for time-varying channels, in which no training data is needed. Simulation
results show that our scheme can achieve a good performance in both slow
fading and time-varying fading channels with a reasonable complexity.

I. INTRODUCTION

In multiple antenna systems, channel estimation becomes more
complicated than that in single antenna systems. In order to
avoid channel estimation, differential unitary space-time modulation
(DUSTM) was proposed by Hughes [2] and Hochwald and Sweldens
[3] independently, where unitary space-time codes with group struc-
tures were constructed. In [1], a differential space-time block code
(DSTBC) based on Alamouti’s scheme with PSK modulation was
proposed and it has a fast maximum-likelihood (ML) decoding. More
recently, trellis-coded DUSTM schemes (TC-DUSTM) were studied
in [9] where trellis coded modulation (TCM) was combined with
DUSTM to achieve a better coding gain. However, the decoding
complexity of TC-DUSTM grows exponentially with the number of
transmit antennas due to its inner unitary group codes.

In this paper, we propose a differential space-time trellis-coded
scheme based on the lately proposed SOSTTC [4], [5], [6] for space-
time coded systems with coherent detection. It achieves full diversity
and has a better performance than DSTBC does in Rayleigh flat
fading channels. A suboptimal differential decoder, which combines
decision feedback differential detection (DF-DD) with Viterbi algo-
rithm using the PSP technique, is developed. Due to the orthogonal
structure of SOSTTC, the branch metric calculation can be done in a
symbol-wise like way, which means our scheme has a lower decoding
complexity compared with TC-DUSTM when the transmission rate
is high. It can approach the performance of the coherent decoding in
slow fading channels and the performance loss is negligible when the
frame length is large. Moreover, we propose an adaptive receiver for
time-varying fading channels. It does not need the training symbols
or the channel statistics. Simulation results show that our proposed
schemes can provide a good performance with modest complexity in
both slow fading channels and time-varying fading channels.

In what follows, cH , cT , ‖c‖ ,c−1, tr{c} and det{c} refer to the
complex conjugate transpose, transpose, Frobenius norm, the inverse,
the trace and the determinant of the matrix c, respectively. �{c}, |c|
and c∗ denote the real part, the complex modulus and the complex
conjugate of a complex number c. E{c} denotes the expectation of the
random variable c. Ik, 1k and 0m,n denote a k by k identity matrix,
a k by k all one matrix and a m by n zero matrix, respectively.

II. SYSTEM MODEL

For simplicity, we consider a wireless communication system with
two transmit and one receive antennas that operates in a Rayleigh flat
fading environment. The extension to systems with more transmit

antennas is trivial. Let sm(t) be the transmitted complex symbol
from the m-th transmit antenna at time t with E{|sm(t)|2} = 0.5.
Let hm(t) be the fading coefficient of the channel between the m-
th transmit antenna and the receive antenna. We assume hm(t) is a
zero-mean complex Gaussian random variable with variance 0.5 per
dimension and hm(t) is independent in the space domain. In this
paper, we consider two channel models. One is slow fading in which
we assume that hm(t) keeps constant in each transmission frame
and it changes independently from frame to frame. Another model is
time-varying in which we take the effects of Doppler frequency shift
and carrier frequency offset (CFO) into account. Based on Jakes’
model, the autocorrelation function rhm(τ) can be written as:

rhm(τ) = E{h∗
m(t)hm(t + τ)} = exp(j2πfoTsτ)J0(2πfdTsτ),

(1)
where τ = 0, 1, 2, . . . , and fd, fo and Ts refer to the maximum
Doppler frequency shift, the CFO and the symbol interval length,
respectively. J0 is the zeroth order Bessel function. We can drop the
index m from rhm(τ) and rewrite it as rh(τ) because it is the same
for m = 1, 2. Then, the received signal at time t can be written as:

yt =
√

ρ

2∑
m=1

hm(t)sm(t) + wt, t = 1, 2, . . . , (2)

where wt is a complex additive white Gaussian noise with variance
0.5 per dimension and ρ is the signal-to-noise ratio (SNR) at the
receiver.

III. A DIFFERENTIAL SPACE-TIME CODING BASED ON SOSTTC

As shown in [2][3], when the conventional differential decoder
is used, the design criteria for differential unitary space-time codes
are the same as those for systems with coherent decoding, i.e., the
rank criterion and diversity product criterion. The differential scheme
can use the existing space-time codes that are for coherent systems
directly. This motivates the work in this paper. In this section, we
propose a differential trellis-coded scheme based on the recently
proposed SOSTTC design to achieve a better performance.

The encoder structure is similar to DSTBC and the only difference
is that a SOSTTC is used before the differential encoding. Here,
the transmission frame includes Nf space-time blocks, i.e. 2Nf

symbol transmissions. The first transmitted space-time block S0 acts
as a reference signal and it carries no information. At time 2t + 1,
t = 1, 2, 3 · · · , Nf − 1, a block of 2b information bits arrive at
the encoder and are input into the SOSTTC encoder. The SOSTTC
encoder generates a 2 by 2 information matrix Vt based on its trellis
structure and the current state k, which has the following form:

Vt = Ct(c2t+1, c2t+2)R(θk) =

[
c2t+1 c2t+2

−c∗2t+2 c∗2t+1

] [
ejθk 0
0 1

]

where c2t+1 and c2t+2 are two information symbols from the 2b-
PSK constellation Υ with |c2t+i|2 = 0.5, i = 1, 2 and θk is
the rotation angle associated with the trellis state k that belongs
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to the set Θ. We can choose Θ such that the entries of Vt are
also from the constellation Υ [4]. After the SOSTTC encoding, the
information matrix Vt is then input to the differential encoder to
obtain a transmitted signal matrix St and

St = VtSt−1. (3)

The m-th (m = 1, 2) row of St is transmitted at time 2t+m and the
n-th (n = 1, 2) column of St is transmitted from the n-th antenna.
All the design criteria for SOSTTC with coherent detection and the
proposed SOSTTC schemes in [4],[5] and [6] can be used directly
in our design. These criteria can guarantee our scheme to achieve
full diversity and a good performance. More details can be found in
[4],[5] and [6].

In this paper, we assume that the channels are constant in each
space-time code block, i.e. hm(2t + 1) = hm(2t + 2), but may
change from block to block. This assumption is usually acceptable
for most wireless communication systems. Then, at the receiver, the
received signal block Yt = [y2t+1 y2t+2]

T in the t-th space-time
block at time 2t + 1 and 2t + 2 can be written as:

Yt =
√

ρStHt + Wt (4)

where Ht � [h1(2t+1) h2(2t+1)]T and Wt � [w2t+1 w2t+2]
T is

an additive Gaussian noise vector with E{WtWH
t } = I2. Let R−→

H be
the autocorrelation matrix of [h1(1) h1(3) h1(5) · · ·h1(2Nf −1)]T .
The entries of R−→

H are given as: R−→
H [m, n] = rh(2(m − n)) where

rh(t) is the autocorrelation function of each channel coefficient,
which is defined in (1). Denote

T = −(R−→
H +

1

ρ
INf )−1 (5)

where T � [tm,n] is Hermitian. Then the ML detection becomes
[7][10]:

−̂→
V = arg max−→

V
�{

Nf−1∑
m=1

m−1∑
n=0

tm+1,n+1Y
H
m(

m−n−1∏
l=0

Vm−l)Yn} (6)

where
−→
V � [V1 V2 · · ·VNf−1] is the information matrix vector we

need to detect. One can see that the complexity of the ML decoding
grows exponentially with the frame length Nf . It may be difficult to
use ML decoding in a real system.

Instead of ML decoding, based on the trellis structure of SOSTTC,
the Viterbi algorithm can be used to do decoding. Because there exist
parallel branches on the SOSTTC trellis, the decoding is done in two
steps [5]. The first step is to find a survivor branch for each state
transition from the parallel branches attached with it. Then these
survivor branches are used to represent the state transitions and the
standard Viterbi algorithm can be used to find the survivor path. At
each trellis stage, the conventional differential decoder can be used
to calculate the branch metrics. Assume the fading coefficients keep
constant in two consecutive space-time blocks, Ht = Ht−1, we can
get:

Yt = VtYt−1 + Wt − VtWt−1 (7)

where Yt−1 and Wt−1 are the received signal block and the additive
Gaussian noise vector in the (t−1)-th space-time block at time 2t−1
and 2t, respectively. Then, the branch metric can be defined as:

λt(Vt) = �{YH
t VtYt−1}. (8)

Because all the branches leaving from the same state are labelled with
codewords from the same constituent code, which have the same

rotation matrix R(θk), branch metric calculations for all branches
leaving from state k at trellis stage t can be simplified as

λt(Vt) = fθk,1(c2t+1) + fθk,2(c2t+2), (9)

fθk,1(c2t+1) � �{y∗
2t+1yref,k,2t+1

c2t+1 + y∗
2t+2yref,k,2t+2

c∗2t+1},
fθk,2(c2t+2) � �{y∗

2t+1yref,k,2t+2
c2t+2 − y∗

2t+2yref,k,2t+1
c∗2t+2},

where Yref,k,t
� [yref,k,2t+1

yref,k,2t+2
]T = R(θk)Yt−1. The

survivor branch searching for the state transition from state s1 to
state s2 can be done as

V̂t = arg max
(c2t+1,c2t+2)∈Ψ(s1,s2)

{fθs1 ,1(c2t+1) + fθs1 ,2(c2t+2)},
(10)

where Ψ(s1, s2) is the set of the possible values of (c2t+1, c2t+2)
attached with the branches from state s1 to s2. In fact, (10) can be
simplified into a symbol-wise like way [5], which means the decoding
complexity is reduced greatly when the constellation size 2b is large.
Here, we can treat the branch metric calculation (8) as a coherent
detection of the information matrix Vt, which is transmitted through
a known channel Yt−1. The noise power is doubled, as seen in (7) and
the noise terms in different trellis stage now are correlated. However,
we may assume they are uncorrelated and expect the performance
loss is about 3dB compared to the coherent decoding. As we will
see later, the simulation results prove our statements.

IV. IMPROVED DECODERS FOR DIFFERENTIAL SOSTTC

In this section, we propose an improved low-complexity decoder
for slow fading channels, which can compensate the 3dB performance
loss. Furthermore, we give an adaptive decoder with RLS predictors
for time-varying channels.

A. A Suboptimal Receiver for Slow Fading Channels

First, we can rewrite (6) as:

−̂→
V = arg max−→

V
�{

Nf−1∑
m=1

{YH
mVmYref,m}}, (11)

Yref,m �
m−1∑
n=0

tm+1,n+1{(
m−n−1∏

l=1

Vm−l)Yn}, (12)

where, when m − n − 1 = 0, we define
∏0

l=1 Vm−l � I2. Then,
instead of using (8), we redefine the branch metric as:

λm(Vm) = �{YH
mVmYref,m}. (13)

When the channel is slow fading, then R−→
H = 1Nf and from (5), we

get T = −ρINf + ρ2

1+Nf ρ
1Nf . In this case, tm+1,n+1, 1 ≤ m ≤

Nf − 1, 0 ≤ n ≤ m − 1, are constant and can be omitted in (12).
Thus, for slow fading channels, we can define Yref,m as

Yref,m �
m−1∑
n=0

(

m−n−1∏
l=1

Vm−l)Yn. (14)

The problem is that Yref,m is related to the unknown previous
information matrices Vi, i = 1, 2, · · · , m − 1. This can be solved
by the PSP technique [8]. In our case, when we calculate the branch
metrics for branches stemming from state k, at the trellis stage m,
we use the tentative detected information matrix sequence V̂k,i, i =
1, 2, · · · , m− 1, associated with the survivor path of state k in (14)
to calculate the reference vector Yref,k,m

, i.e., Yref,k,m
is Yref,m

when Vm−l in (14) is replaced by V̂k,m−l. Now each survivor path
(or state) has its own reference vector Yref,k,m

. Using Yref,k,m
, the
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branch metric λm of all branches stemming from state k can be
obtained and the Viterbi algorithm of SOSTTC can be done.

In fact, the reference vector Yref,k,m
can be calculated in a

recursive way:

Yref,k,m
= V̂k,m−1Yref,sk,m−1,m−1

+ Ym−1 (15)

where sk,m−1 is the state that the survivor path of state k (at the
trellis stage m) goes through at the trellis stage m − 1. And we let
Yref,k,0

= 02,1. From (15), one can see that at each trellis stage m,
besides Ym, we only need to store Yref,k,m

for each state k. The
extra storage requirement is low and the computation of Yref,k,m+1

is simple. Based on the above discussions, we arrive at the following
suboptimal receiver for slow fading channels based on PSP, where
Ns denotes the state number of SOSTTC trellis:

• Give the initial values to Yref,k,1
, Yref,k,1

= Y0, k =
1, 2 · · · , Ns.

• At the trellis stage m = 1, 2, 3, · · · , Nf − 1,

– For k = 1, 2, 3, · · · , Ns, calculate the branch metric
λm(Vm) for every branch stemming from state k at the
trellis state m using (13). Search the survivor branch for
each parallel branch set.

– Using the survivor branches to represent the state transi-
tions, do the standard Viterbi survivor path and state metric
update operations.

– For the state k = 1, 2, 3, · · · , Ns at trellis stage m + 1,
update the reference vector Yref,k,m+1

using (15).

• Standard Viterbi traceback operation.

Here we want to mention that the fast decoding in (10) still exists
when we do the survivor branch searching operation in each parallel
branch set. The only difference is that here, for different state k at the
trellis stage m, we need to use different reference vector Yref,k,m

.
We refer this proposed scheme as NON-RLS decoder.

B. An Adaptive Receiver for Time-Varying Channels

When the channel is time-varying, tm+1,n+1 in (6) are not con-
stant. when we do the optimal ML decoding in (6), there is no easy
way to get tm+1,n+1. In this section, we propose an adaptive RLS
receiver for time-varying channels.

We still define the branch metric as λm(Vm) =
�{YH

mVmYref,k,m
}, but the reference vector Yref,k,m

becomes:

Yref,k,m
=

m−1∑
n=0

tm+1,n+1{(
m−n−1∏

l=1

V̂k,m−l)Yn} (16)

and we need to estimate tm+1,n+1. In order to reduce the complexity,
we calculate Yref,k,m

only based on N recently received signal
blocks and let tm+1,n+1 = 0, for n = 0, 1, · · · , m−N−1. Then we
only need to estimate N parameters tm+1,n+1, n = m−N, · · · , m−
1, where N is called as the decision feedback length. We can think
of them as coefficients of an adaptive predictor and incorporate Ns

RLS predictors into the Viterbi algorithms to estimate them. Every
state has its own RLS predictor to track channel variance. Denote
t̂k,m,n as the estimation of tm+1,m−n+1, n = 1, · · · , N at state k.
Then we can rewrite (16) as

Yref,k,m
=

N∑
n=1

t̂k,m,n{(
n−1∏
l=1

V̂k,m−l)Ym−n} (17)

After the Viterbi decoder finishes the survivor path and state metric
update operation, RLS predictors use the tentative decision results of

each survivor path to update the estimation of t̂k,m,n. Following [7],
we choose the RLS cost function (for all k) as:

Jk[m] �
m∑

ξ=1

ωm−ξ‖Ym −
N∑

n=1

t̂k,m,n{(
n−1∏
l=0

V̂k,m−l)Ym−n}‖2

(18)
where ω, 0 < ω ≤ 1, denotes the forgetting factor. The proposed
adaptive decoder is summarized as bellow:

• Give the initial values for t̂k,1,n, k = 1, 2 · · · , Ns,

t̂k,1,n = { 1, n = 1,
0, n = 2, 3, · · · , N.

• At the trellis stage m = 1, 2, 3, · · · , Nf − 1,

– For k = 1, 2, 3, · · · , Ns, calculate the reference vector
Yref,k,m

using t̂k,m,n. Then calculate the branch metric
λm(Vm) for all branches stemming from state k at the
trellis state m using (13). Search the survivor branch for
each parallel branch set.

– Using the survivor branches to represent the state transi-
tions, do the standard Viterbi survivor path and state metric
update operations.

– For state k = 1, 2, 3, · · · , Ns at trellis stage m + 1, update
the RLS output as:
Denote T̂k,m=[t̂k,m,1 t̂k,m,2 · · · t̂k,m,N ]T , which is a N by
1 vector. Ûk,m = [V̂k,mYm−1, V̂k,mV̂k,m−1Ym−2, · · · ,
(
∏N−1

l=0 V̂k,m−l)Ym−N ]T , which is an N by 2 matrix. The
RLS algorithm is: for each state k at the trellis stage m+1

Γk,m+1 = [I2 + ω−1Û
H

sm,k,mPsm,k,mÛsm,k,m]−1

Λk,m+1 = ω−1Psm,k,mÛsm,k,mΓk,m+1

αk,m+1 = Ym − T̂
H

sm,k,mÛsm,k,m

T̂k,m+1 = T̂sm,k,m + Λk,m+1α
H
k,m+1

P̂k,m+1 = ω−1Psm,k,m − ω−1Λk,m+1Û
H

sm,k,mPsm,k,m

with the initial conditions P̂k,1 = δxIN where δx is a
constant parameter.

• Standard Viterbi traceback operation.

With the RLS predictors, the matrix inversion operation is avoided
and it does not need any channel fading statistics or the SNR
information. It is easy to see that we still can do survivor branch
searching in symbol-wise like way in each parallel branch set.
Therefore, the complexity is reduced. We refer this adaptive decoder
as RLS decoder.

V. SIMULATION RESULTS

The simulated system has two transmit antennas and one receive
antenna. Each frame consists of Nf = 65 space-time blocks. The
SOSTTC scheme we used is a four-state QPSK SOSTTC from
[4], whose rate is 2bits/channel use. Its set-partitioning and trellis
structure are given in Fig.3 and Fig.5 of [4]. The time varying
channels are generated as hm(t) = exp(j2πfot)αm(t) where αm(t)
is generated based on Jakes’ model. The simulated channels vary
inside each space-time block although we assume it is not changed
in each block.

Fig.1 shows the performance of different decoding schemes in
slow fading channels. One can see that our differential SOSTTC
scheme with conventional differential decoding has about 1.5dB
performance gain at FER of 0.01 over the DSTBC and 16-state TC-
DUSTM [9] with conventional decoding. Obviously, a well known
3dB performance loss of the conventional differential decoding is
there. At FER of 0.01, the performance loss is about 3.3dB, which is

III - 1075

➡ ➡



worse than 3dB. This is mainly caused by the correlation of the noise
terms in different trellis stages. If the proposed NON-RLS scheme
is used, we can approach the performance of coherent decoding.
There is only about 0.4dB performance loss at FER of 0.01. The
proposed RLS decoding scheme with the decision feedback length
N = 3 also has a very good performance and its performance loss
at FER of 0.01 is about 1.6dB compared with coherent detection.
Fig.2 demonstrates the sensitivity of each scheme to CFO. In this
simulation, the SNR is fixed to 20dB and three decoding schemes
are simulated with different normalized CFO (foTs). One can see
that, when CFO is small, say foTs < 0.001, the NON-RLS decoder
works well because the noise is mainly from the receiver. On the
other hand, when foTs > 0.001, the performance of the NON-
RLS degrades greatly. However, the performances of RLS and the
conventional decoder are almost unchanged when foTs < 0.007. The
RLS is the most robust scheme against CFO among the others shown
in Fig.2. Fig.3 shows the performances of the proposed schemes in
time-varying channels with different Doppler frequency shifts. Again,
NON-RLS scheme is more sensitive to the channel variance caused
by Doppler frequency shifts than the other two are. The RLS decoder
always has a better performance than the conventional differential
decoder. The performance analysis and more simulation results can
be found in [11].

VI. CONCLUSIONS

In this paper, a differential space-time trellis-coded scheme based
on SOSTTC is proposed. It can provide a better coding gain than
DSTBC. For slow fading channels, a suboptimal low complexity
decoding algorithm based on the PSP technique is developed. It
can approach the performance of coherent detection when the frame
length is large. For time-varying channels, a bank of RLS predictors
are incorporated into the Viterbi decoder to track to the channel
variances. The simulation results show this scheme works well in
both slow fading channels and time-varying channels.
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Fig. 1. Simulation results under a slow fading channel.
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Fig. 2. Simulation results under a time-varying channel with various CFO.
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Fig. 3. Simulation results under a time-varying channel with various Doppler
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