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ABSTRACT
In this work, the natural geometric relation between the space time

block code design if the channel is unknown at the receiver and its

counterpart design if the receiver knows the channel is exploited,

to establish an estimate on the corresponding diversities. This
leads to a decomposition of code designs and splits the design

problem into two complexity reduced sub tasks

1. INTRODUCTION

Since the multi antenna channel has been discovered as a source
for high data rate communication a bulk of literature dealt with

general capacity/performance analysis and code construction for

the Rayleigh flat fading channel with no channel knowledge at the

transmitter and known (resp. unknown) channel at the receiver,
see e.g. [1], [2] (resp. [3], [4], [5]) for a small sample from the

literature.

The dimensionality of the code symbols is determined by two

system parameters, the block length n and the number k of trans-
mit antennas. While the first one can be chosen rather large, upper

bounded only by the coherence length of the channel, the second

one is usually some small number due to hardware limitations. In

order to keep the coding (and decoding) complexity low, a con-
centration on low dimensional unitary groups (n = k) as coding

spaces took place soon ([6]), instead of taking the more general

high dimensional Stiefel (known channel) and Grassmann mani-

folds (unknown channel) [3][4].
These general coding spaces consist of certain rectangular sig-

nal matrices of size n × k with arbitrary blocklength n ≥ k. In-

spired from [7], in [8] a general analysis of packings in the Stiefel

and Grassmann manifold revealed, that there is an impact on the
performance to expect if one chooses n � k, more precisely, the

following proposition holds [8]):

Proposition 1.1.
Given the SNR ρ ≥ 1, the rate R = 1

n
log|C|, n ≥ 2k, and

D = k(2n − k) (known channel), resp. D = 2k(n − k)

(unknown channel). Then there exist space time block codes C
with minimal distance dmin satisfying

dmin ≥ C

r
n

k

„
1

2

«nR+1
D

(1)

for some constant C > 0 depending on the channel knowledge

at the receiver. Thus the performance increases monotonically

at least proportionally to
p

n
k

.

Having the common literature (see above) in mind, this result
comes rather unexpected and further research effort seems promis-

ing. Moreover it becomes even more important when considering

space frequency code design: Recent developments [9],[10] indi-

cate, that the relevant coding spaces are certain subsets of (large
dimensional) Stiefel and Grassmann manifolds. Thus considering

these coding spaces in general may be of considerable importance

for space frequency code designs.

In the present work it will be shown, how general space time

block code designs can be decomposed into two ’smaller’ pieces
with reduced design complexity (Theorem 4.3), both already in the

focus of current research. The achieved result can be seen as com-

plementary to that of Kammoun and Belfiore [11], who presented

a coding scheme for unknown channel space time block codes in
terms of known channel ones, compare Remark 4.5 for further im-

plications.

The key observation is the quite intuitive but technically not

obvious diversity monotonicity (Proposition 4.2), which states that

the performance of each unknown channel space time block code
grows when considered as a known channel code. This can be

interpreted as to be due to some higher resolution of the known

channel receiver compared to its unknown channel counterpart,

reflecting the information theoretic relation between the system
designs.

Before we come to these results in section 4, section 2 first

introduces the channel model and basic properties of the coding

spaces before the diversity as our fundamental performance mea-

sure will be defined in section 3. Note that thanks to the geometric
picture emphasized here the actual proofs of the propositions in

section 4 seem quite elementary, and they will be sketched here

only. Indeed the statements follow once the principal fibre struc-

ture (7) relating the coding spaces is exploited. In this sense it is a
favour of this work to demonstrate the power and spirit of geomet-

rical methods in space time coding.

2. CHANNEL MODEL AND CODING SPACES

We consider the Rayleigh flat fading MIMO (multiple input multi-

ple output) channel without channel knowledge at the transmitter

and maximum likelihood decoding at the receiver as described in

[3] (with normed expected power
P

j E|sij |2 = 1 per time step,
i = 1, . . . , n, E denotes expectation):

X =
√

ρ SH + W (2)

S = (sij) ∈ C
n×k, H ∈ C

k×k′
, X, W ∈ C

n×k′
, whereas n

denotes the coherence time of the channel (resp. the block length
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of the signals), k, k′ denote the number of transmit, resp. receiver

antennas, W ∼ i.i.d. CN (0, 1) is the noise, H ∼ i.i.d. CN (0, 1)
the channel matrix and S, X denote the transmitted, resp. received
signal with SNR (signal to noise ratio) ρ.

Nowadays it is common sense (see Hochwald and Marzetta

[3, Theorem 1 and 2]) that in the high SNR regime and under the

assumption of an equal power profile signals S ∈ C
n×k of the

form

S =

r
n

k
Φ , Φ†Φ = 1k (3)

represent optimal transmission strategies for a variety of scenar-

ios. Due to the unitarity condition (’unitary space time modula-

tion’, see [4]) Φ†Φ = 1k (1k denotes the k × k identity matrix)

imposed on the column vectors of Φ ∈ C
n×k, the coding space is

essentially the complex Stiefel manifold V C

k,n of unitary k-frames
in C

n. Moreover, if the channel is unknown at the receiver the

mutual information (ergodic in the channel realisations) depends

only on the subspace in C
n spanned by the columns of Φ, not on

the k-frame itself [12]. Thus in this case we obtain Φ as being
an element of the complex Grassmann manifold of k-dimensional

linear subspaces of C
n. Let us explore the coding spaces in more

detail:

Known channel — The Stiefel manifold V C

k,n : The Stiefel

manifold V C

k,n := {Φ ∈ C
n×k |Φ†Φ = 1} is canonically a ho-

mogeneous space
`
U(n)

π−→ V C

k,n; U(n − k)
´
: The canonical

left multiplication of k-frames in C
n by unitary n × n matrices

transforms each pair of k-frames into each other. Thus the action

of the unitary group U(n) on V C

k,n is transitive and establishes the

canonical diffeomorphism V C

k,n
∼= U(n)

‹`
1 0
0 U(n−k)

´
.

A code CV for the known channel model is given by a discrete

set CV = {pn
k

Φ} ⊂ p
n
k

V C

k,n. At the receiver the maximum
likelihood decision reads (see [4])

ΦML :
‚‚‚X −

q
ρ n

k
ΦMLH

‚‚‚
F
≤
‚‚‚X −

q
ρ n

k
ΦH

‚‚‚
F
∀Φ∈C (4)

whereas X =
p

ρ n
k

ΨH + W is the received signal.

Unknown channel — The Grassmann manifold GC

k,n: The

Grassmann manifold GC

k,n of all k-dimensional linear subspaces

〈Φ〉 of C
n, Φ ∈ V C

k,n, also carries the structure of a U(n)-normal

homogeneous space
`
U(n)

π−→ GC

k,n; U(k)×U(n− k)
´

by ne-

glecting not only the orthogonal complement of the column vec-

tors in Φ (which has been done for V C

k,n) but also the particular
choice of the spanning k-frame. This leads to the representation

GC

k,n
∼= U(n)

.“
U(k) 0

0 U(n−k)

”
. To simplify matters let us as-

sume k ≤ n/2 (otherwise switch to orthogonal complements).

Then each two elements 〈Φ〉 , 〈Ψ〉 ∈ GC

k,n are separated by the k
stationary (or principal) angles 0 ≤ ϑ1 ≤ · · · ≤ ϑk ≤ π/2 (de-

fined successively by the critical values of (v, w) �−→ arccos|<
v, w>| for unit vectors in 〈Φ〉, resp. 〈Ψ〉), with (any representing

k-frame will do)
cos ϑi = σi(Φ

†Ψ) (5)

An important application of stationary angles on some given pair

〈Φ〉 , 〈Ψ〉 with principal angles (ϑi) is, that due to the transitivity

of the unitary group action there exist an unitary U , such that Ψ
(say) can always be translated into Ψ0 := ( 1

0 ) = UΨ and in
U 〈Φ〉 = 〈UΦ〉 one can choose a basis such that we end up with

the canonical representing k-frames

Ψ0 = (1,0)T , Φ0 = ((cos ϑi), (sin ϑi),0)T
(6)

(where (cos ϑi) := diag(cos ϑi)i=1,...,k ∈ R
k×k) for the trans-

lated spaces 〈Ψ0〉 = U 〈Ψ〉, 〈Φ0〉 = U 〈Φ〉.
The principal fibre structure P V

G : The natural relationship
between the homogeneous spaces V C

k,n and GC

k,n is subsumed in

the canonical principal fibre bundle structure

P V
G :=

„
V C

k,n

πV
G−→ GC

k,n; U(k)

«
(7)

which (locally) embeds GC

k,n into V C

k,n by choosing a represent-

ing k-frame Φu which spans the subspace 〈Φ〉. However there

remains the freedom of multiplication with arbitrary unitary ma-
trices u ∈ U(k) from the right, and for practical applications it is

necessary to specify a unique choice for Φ and u, given 〈Φ〉 (si-

multaneously for all 〈Φ〉 ∈ GC

k,n, not only for pairs as in (6)). But

locally this can always be achieved and we do not want to go into
details here.

So finally we can consider codes CG ⊂ p
n
k
GC

k,n always as

discrete subsets of
p

n
k
V C

k,n and the maximum likelihood criterion

for the unknown channel receiver reads now ([4])

ΦML :
‚‚‚qρ n

k
Φ†

MLX
‚‚‚

F
≥
‚‚‚qρ n

k
Φ†X

‚‚‚
F

∀Φ∈C (8)

whereas X =
p

ρ n
k

ΨH + W is the received signal.

3. PERFORMANCE ANALYSIS: DIVERSITY

The pairwise error probability P of mistaking the symbol Φ for Ψ
(kept fixed in this section) at the receiver can be (Chernov) upper

bounded as [4]

P ≤ 1

2

 
kY

i=1

ˆ
1 + � σ2

i

˜!−k′

(9)

whereas (known channel)

� = � :=
ρn

4k
(10)

σi = σi := σi(Φ − Ψ) ∈ [0, 2] (11)

satisfying the invariance property

σi(U(Φ − Ψ)v) = σi(Φ − Ψ) ∀U∈U(n), v∈U(k) (12)

respectively (unknown channel)

� = � :=
�2

� + 1/4
=

(ρ n
k
)2

4(1 + ρ n
k
)

(13)

σi =
q

1 − σ2
i , σi := σi(Φ

†Ψ) = cos ϑi ∈ [0, 1] (14)

satisfying (in correspondence to (6))

σi((UΦv)†(UΨw)) = σi(Φ
†Ψ) ∀U∈U(n), v,w∈U(k) (15)

The term in parentheses in (9) is called (pairwise) diversity
Div, and we take it as our basic performance measure for codes.

With the elementary symmetric polynomials defined by symk
0 :=

1, symk
j (x1, . . . , xk) =

P
Ij∈Sk

j
xIj

=
P

Ij∈Sk
j

xi1 · · ·xij (with
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Sk
j := {(i1, . . . , ij) ∈ N

j | 1 ≤ i1 < · · · < ij ≤ k}), j =
1, . . . , k, and with the notation

sj := symk
j (σ2

1 , . . . , σ2
k) =

X
Ij∈Sk

j

s2
Ij

(16)

we find generically

Div :=
kX

i=0

si�
i

(17)

The first and highest order term of Div are the well known di-

versity sum d (d for ’distance’) and diversity product p. While
the maximum likelihood receivers (4), (8) measure d directly, the

diversity product becomes important as the leading term in the di-

versity.

Note that the known channel diversity Div is formally similar
to the unknown channel diversity Div by (17), resp. (7), but the

constituting singular values (11), (14) reflect the underlying topo-

logical structures induced by the maximum likelihood receivers

(4), (8). And these structures are entirely distinct.

4. EMBEDDING PROPERTIES

Now let us investigate the relation between the unknown and known

channel diversity quantities. From the information theoretic in-

equality I(X;S) ≤ I((X,H); S) between the corresponding mu-

tual informations we expect such a relation satisfied by the diver-
sity. The ranges for σ (11) and σ (14) indicate, that the known

channel receiver may benefit from some higher ’resolution’, but if

and how this carries over to the diversity is not obvious and re-

quires a rigorous proof. The investigations of this section give an
affirmative answer to that conjecture.

By a slight abuse of notation let us define the fibre minima of

sIj
with respect to the fibres of P V

G (7) as

sdistIj
(Φ, Ψ) := min

Φ∈πV
G

−1
(〈Φ〉)

Ψ∈πV
G

−1
(〈Ψ〉)

sIj
(Φ, Ψ) (18)

sdistj(Φ, Ψ) :=
P

Ij∈Sk
j

sdist2Ij
(Φ, Ψ), and smin := minC×C s

for functions s : C −→ R. Then the following lemma holds:

Lemma 4.1.
Let 〈Φ〉 , 〈Ψ〉 ∈ GC

k,n separated by principal angles ϑ1, . . . , ϑk.

Then successively

∀Ij∈Sk
j

sdistIj
(Φ, Ψ) =

s
2j
Y
i∈Ij

(1 − cos ϑk−i+1) (19)

∀j sj(Φ, Ψ) ≤ sdistj(Φ, Ψ) ≤ sj(Φ, Ψ) (20)

smin
j ≤ sdistmin

j ≤ smin
j (21)

Outline of proof. 1

(19) follows by matrix analysis applied to σ, σ exploiting the de-

grees of freedom (12), (15) and (6). The inequalities (20) are a

simple consequence of 2 cos α − cos2 α ≤ 1 in [0, π
2
], and (21) is

straight forward.

1A more detailed proof can be found in [13]

From Lemma 4.1 together with 1
2
� ≤ � ≤ �, if ρ ≥ 1 (n ≥ k

is understood), it follows

Proposition 4.2.
For any pair 〈Φ〉 , 〈Ψ〉 ∈ GC

k,n and each fixed ρ ≥ 1 holds

Div(Φ, Ψ) ≤ Div(Φ, Ψ) (22)

We conclude, that the known channel maximum likelihood re-

ceiver applied to CG has at least the diversity as the unknown chan-

nel receiver, the diversity grows.

Having explored the relationship of the embedding GC

k,n ⊂
V C

k,n let us come to a somewhat complementary scenario, which

offers the possibility of coding complexity reduction: Consider a

single fibre over 〈Φ〉. Then, by Φw = (Φ, Φ⊥) ( w
0 ), there holds a

special kind of ’vertical’ left invariance, namely

sIj
(Φu, Φv) = sU

Ij
(u, v) , ∀Ij∈Sk

j
, ∀u,v∈U(k) (23)

where the right hand side is evaluated in U(k) = V C

k,k. Analo-

gously we define for the special case n = k: �U := ρ
4

, sU
j :=P

Ij∈Sk
j
(sU

Ij
)2, and Div

U
:=
P

i sU
i (�U )i. Then we arrive at

Theorem 4.3.
Given codes CG ⊂ p

n
k

GC

k,n ⊂ p
n
k

V C

k,n and CU ⊂ U(k),

then the composed code CV ⊂pn
k

V C

k,n given by

CV := CG · CU =
n

Φu |Φ ∈ CG, u ∈ CU
o

(24)

satisfies

smin
j ≥ min{sdistmin

j , sU min
j } , ∀j=1,...,k (25)

and for ρ ≥ 1

Div
min ≥ min{Divmin, gDivU min} (26)

holds, whereas gDivU :=
P

i(
n
k
)isU

i (�U )i (thus the power

constraint factor
p

n
k

sharpens the estimate).

Therefore the code design splits up into two parts: Codes CG

represent the familiar coding problem for the unknown channel
corresponding to

p
n
k

GC

k,n, which has smaller dimension as the

general problem in
p

n
k

V C

k,n. The code CU represents a coding

problem for the known channel in U(k) = V C

k,k, contributing the

dimensions left by V C

k,n
∼= GC

k,n × U(k) locally. So both parts

represent a somewhat smaller coding problem, reducing therefore

the complexity of the overall problem.

Remark 4.4.

A related question arises, when one considers the task of given

a code CU , does there exist a code CV with the same rate but

better performance than CU ? Concerning the diversity sum

d a partial answer gives [8]: The transmit power constraint

sets the requirement
p

n
k
dmin ≥ dU min. Since there exist a

monotonically increasing lower bound for dmin when n
k

grows
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(Proposition 1.1) this requirement can be certainly fulfilled.

This again emphasises the need for coding strategies in the

general coding spaces V C

k,n, GC

k,n, n larger than k. However,

it remains an open question, whether one can achieve the goal

by composed codes of the form CV = CG · CU .

Remark 4.5.

A conceptual simple (but computational complex) embedding

of GC

k,n into V C

k,n is given by the parametrisation of GC

k,n with

horizontal tangents XH =
“

0 −B†
B 0

”
, B ∈ C

(n−k)×k in its

total space U(n). In a recent article [11] it has been shown,

that coding for the unknown channel is under certain assump-

tions equivalent to coding on the horizontal tangent space, with

respect to the known channel diversity in V C

k,n−k. Combining

that with Theorem 4.3 we can roughly state this correspon-

dence as V C

k,n−k ⊂ GC

k,n ⊂ V C

k,n, which gives rise to a se-

quence . . . → CV
i → CG

i+1 → CV
i+1 → . . . of codes with

increasing block length i · k, i = 1, 2, . . .

5. CONCLUSION

It has been shown, that the diversity, taken as a performance mea-

sure, grows when an unknown channel space time block code is

used in the known channel scenario (Proposition 4.2). This result

turned out to be due to the various invariance properties satisfied
by the diversity, though tied to distinct underlying topologies of

the coding spaces induced by the maximum likelihood receiver

metrics.

Exploiting some further ’vertical’ invariance, embeddings of

both GC

k,n and U(k) into V C

k,n led to the decomposition of codes

on V C

k,n into ’smaller’ pieces in GC

k,n and U(k) (Theorem 4.3),

both of them being already in the focus of current research. The

other way round, given an unknown channel space time code and
a ’small’ known channel code, the performance of the resulting

(larger dimensional) product code on V C

k,n is lower bounded by

the diversity expressions stated in the theorem. Thus the design

complexity has been reduced to the smaller problems on GC

k,n and
U(k). Together with Proposition 1.1 this opens the door to poten-

tially high performing space time block codes, when n � k.

Following this line of thought, this work could be seen as a

second step towards a geometry based analysis of general space

time block codes inspired by [8]. It demonstrates the power of
geometrical methods in space time coding theory. As already in-

dicated in the introduction, the results may be of some importance

in the context of space frequency codes also. What remains is

the challenge of effective high dimensional code construction (es-
pecially for the unknown channel) with low complexity decoding

properties, which will be addressed in a future work.
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