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ABSTRACT

In this paper, we introduce the definitions of a full diversity integer
generating matrix and the corresponding norm form space-time
code for MIMO systems. Subject to a power constraint, we char-
acterize all full diversity integer generating matrices with the first
three largest gains in the Gaussian integer ring and the Eisenstein
integer ring for two transmitter antennas. Using this generating
matrix family to separately design space-time codes layer by layer
for two transmitter antenna and two receiver antenna MIMO sys-
tems, we obtain the optimal norm form integer space-time codes
both in the Gaussian integer ring and the Eisentein integer ring in
the sense of maximizing the minimum determinant of codeword
matrices. As a consequence, we prove that the golden code con-
structed by Dayal and Varanasi, Belfiore, Rekaya and Viterbo is
optimal in the Gaussian integer ring. Also, we find the optimal
code in the Eisentein integer ring, the coding gain of which is
greater than that of the golden code.

1. INTRODUCTION

In this paper, we focus on a coherent MIMO system with two
transmitter antennas and two receiver antennas. For such a sys-
tem, Damen, Tewfik and Belfiore [1] first constructed a full rate
full diversity linear space-time block code without information
loss for M-ary QAM signals. Recently, this result was general-
ized to any number of transmitter antennas [2], [3], [4] and to a
rectangular linear dispersion code case [5], [6]. The main issue on
these current designs is that the coding gain vanishes rapidly as
the constellation size increases. Therefore, full rate full diversity
non-vanishing space-time code designs have recently drawn much
attention [7], [8], [9], where the coding gain for two transmitter
antenna and two receiver antenna MIMO systems is constant in
the whole Gaussian integer ring Z[j]. Lately, this non-vanishing
codes have been extended to a MIMO system with three, four and
six transmitter antennas [10], [11], [12], [13].

In this paper, we introduce the definitions of a full diversity
integer generating matrix and the corresponding norm form inte-
ger space-time code for MIMO systems. Subject to a power con-
straint, we characterize all full diversity integer generating matri-
ces with the first three largest gains in the Gaussian integer ring
and the Eisenstein integer ring for two transmitter antennas. Uti-
lizing this generating matrix family to design norm form integer
space-time codes for two transmitter antenna and two receiver an-
tenna MIMO systems, we obtain the optimal codes in the sense of
maximizing the minimum determinant of codeword matrices. As

a consequence, we prove that the codes constructed by Dayal and
Varanasi, Belfiore, Rekaya and Viterbo are optimal among all inte-
ger generating matrix family with the same power in the Gaussian
integer ring1. Also, we find the optimal codes in the Eisentein in-
teger ring Z[ζ3], the error performance of which is better than the
golden code.

Notation: Throughout this paper, we use the following nota-
tion: Matrices are denoted by uppercase boldface characters (e.g.,
A), while column vectors are denoted by lowercase boldface char-
acters (e.g., b). The i-th entry of b is denoted by bi. The columns
of an M × N matrix A are denoted by a1, a2, · · · ,aN . The Her-
mitian transpose of A (i.e., the conjugate transpose of A) is de-
noted by AH . Z denotes the rational integer ring; C denotes the
field of complex number; j =

√−1; ζm = exp
(

j2π
m

)
; Z[ζm]

denotes the cyclotomic ring generated by Z and the cyclotomic
number ζm. For simplicity, we also use notation In to denote the
Gaussain integer ring Z[j] or the Eisentein integer ring Z[ζ3].

2. CHARACTERIZATION OF INTEGER GENERATING
MATRICES WITH FULL DIVERSITY

In this section, we first define a full diversity integer generating
matrix and then we characterize all such matrices with the first
three largest coding gains in the Gaussian integer ring and the
Eisentein ring subject to a power constraint.

2.1. Definition of full diversity integer generating matrices

First, we introduce the definition of a full diversity integer gener-
ating matrix.

Definition 1 Let s ∈ I
M
n . An M × M matrix G is said to be an

integer generating matrix if there exists a nonzero constant G ∈ C

such that for any s ∈ I
M
n ,

∏M
k=1 xk = Gα, where x = Gs and

α ∈ In. This generating matrix G is said to be of full diversity
if for any s ∈ I

M
n \ 0,

∏M
k=1 xk �= 0. The absolute value |G| of

constant G is called the gain of the integer generating matrix G.
�

A typical integer generating matrix example is the cyclotomic gen-
erating matrix developed in [14], [15], [16], [17], [18] for a specific

1Dayal and Varanasi [8] proved that their code; i.e., the golden code, is
optimal among all real rotation generating matrices.
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number M . In particular, when M = 2, a full diversity integer cy-
clotomic unitary generating matrix is given by

G =
1√
2

(
1 exp(πj

4
)

1 − exp(πj
4

)

)
(1)

Here, a natural question is whether such a generating matrix for an
arbitrarily given number of M exists and whether all such generat-
ing matrices can be characterized if exists? In the next subsection,
we will characterize all such two by two matrices with the first,
second and third largest gain in the Gaussian integer ring and the
Eisentein ring subject to a power constraint.

2.2. Parameterization of full diversity integer generating ma-
trices

In this subsection, we characterize all two by two full diversity in-

teger generating matrices. Let G =

(
a b
c d

)
. Now we enforce

a power constraint and the full diversity constraint on the generat-
ing matrix to design the two by two generating matrix G such that
the gain |G| is maximized. Our problem can be formally stated as

Problem 1 Find a two by two integer generating matrix G such
that the gain |G| is maximized subject to the following two con-
straints:

1. Power constraint:

tr
(
GGH

)
= |a|2 + |b|2 + |c|2 + |d|2 = p (2)

2. Full diversity constraint of the integer generating matrix G.

�

We can prove that Problem 1 is equivalent to the following opti-
mization problem.

Formulation 1 Find integers m1, m2 and m3 in the ring In such
that

max |G|2 =
p2

2 (2(|m1|2 + |m2|2) + |m3|2 + |∆|) (3)

subject to the full diversity constraint that ∆ = m2
3 − 4m1m2 is

square-free in the integer ring In. �

We are now in a position to formally state our main results.

Theorem 1 For the Gaussian integer ring Z[j], the optimal solu-
tion of Problem 1 with the first three largest gains, denoted by |G1|,
|G2| and |G3|, respectively, can be characterized as follows:

(1) The first largest gain is |G1| = p
4

and the corresponding
generating matrices are

G11 =

√
p

2

(
ejα 0
0 ejβ

) (
1 ejϕ

1 −ejϕ

)
, (4)

G12 =

√
p

2

(
ejα 0
0 ejβ

) (
1 e−j(θ+φ)

1 ej(θ+2φ)

)
, (5)

G13 =

√
p

2

(
ejα 0
0 ejβ

) (
1 −je−j(θ+φ)

1 jej(θ+2φ)

)
, (6)

where ϕ = ±π
4
,± 3π

4
, θ = ±π

3
,± 2π

3
, φ = 0, π,±π

2
and α and β

are arbitrary real numbers.

(2) The second largest gain is |G2| = p√
10+2

√
17

and matri-

ces are

G2 =

√
p

2

⎛
⎝
√

2
1+|t|2 ejα 0

0 2
√

1+|t|2
5+

√
17

ejβ

⎞
⎠(

t 1
m1t

−1 m2

)

where α and β are arbitrary real numbers, m1 and m2 are

{
m1 = 1
m2 = −j

,

{
m1 = −1
m2 = j

,

{
m1 = j
m2 = −1

,

{
m1 = −j
m2 = 1

and t is determined by t =
m3+

√
m2

3−4m1m2
2m2

with m3 = ±1,±j.
(3) The third largest gain is |G3| = p

2
√

5
and the generating

matrices are given by

G31 =

√
p

2

⎛
⎝
√

2
1+|τ |2 ejα 0

0 2

√
1+|τ |2

10
ejβ

⎞
⎠ (

τ 1
−τ−1 m2

)

G32 =

√
p

2

⎛
⎝
√

2
1+|τ |2 ejα 0

0 2

√
1+|τ |2

10
ejβ

⎞
⎠ (

τ −j
τ−1 m2j

)
,

where α and β are arbitrary real numbers and τ is determined by
τ = ±1±√

5
2m

with m = ±1,±j. �

Theorem 2 For the Eisentein integer ring, the optimal solution of
Problem 1 with the first three largest gains, denoted by |E1|, |E2|
and |E3|, respectively, can be parameterized as follows:

(1) The first largest gain is |E1| = p
4

and the generating ma-
trices are

E11 =

√
p

2

(
ejα 0
0 ejβ

) (
1 ∓mj
1 ±mj

)
,

E12 =

√
p

2

(
ejα 0
0 ejβ

) (
1 ∓mζ2

3 j
ζ3 ±mζ6j

)
,

E13 =

√
p

2

(
ejα 0
0 ejβ

) (
1 ∓mζ−1

12 j
ζ6 ±mζ12j

)
,

E14 =

√
p

2

(
ejα 0
0 ejβ

) (
1 ∓mζ−1

12 j
−ζ6 ±mζ12j

)
,

E15 =

√
p

2

(
ejα 0
0 ejβ

) (
1 mζ3e

jθ

ζ3 mζ6e
jθ

)
,

E16 =

√
p

2

(
ejα 0
0 ejβ

) (
1 mζ6e

jθ

ζ2
3 mζ3e

jθ

)
,

where m = ±1,±ζ3, m = ±ζ2
3 and θ = ±π

3
,± 2π

3
.

(2) The second largest gain |E2| = p√
10+2

√
13

and matrices

are given by

E21 =

√
p

2

⎛
⎝
√

2
1+|λ1|2 ejα 0

0 2
√

1+|λ1|2
5+

√
13

ejβ

⎞
⎠ (

λ1 1
−λ−1

1 m2

)
,

E22 =

√
p

2

⎛
⎝
√

2
1+|λ2|2 ejα 0

0 2
√

1+|λ2|2
5+

√
13

ejβ

⎞
⎠ (

λ2 1
−ζ3λ

−1
2 m2

)
,
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E23 =

√
p

2

⎛
⎝
√

2
1+|λ3|2 ejα 0

0 2
√

1+|λ3|2
5+

√
13

ejβ

⎞
⎠ (

λ3 1
−λ−1

3 m2

)
,

E24 =

√
p

2

⎛
⎝
√

2
1+|λ4|2 ejα 0

0 2
√

1+|λ4|2
5+

√
13

ejβ

⎞
⎠ (

λ4 1
−ζ2

3λ−1
4 m2

)
,

E25 =

√
p

2

⎛
⎝
√

2
1+|λ5|2 ejα 0

0 2
√

1+|λ5|2
5+

√
13

ejβ

⎞
⎠ (

λ5 1
−ζ3λ

−1
5 m2

)
,

E26 =

√
p

2

⎛
⎝
√

2
1+|λ6|2 ejα 0

0 2
√

1+|λ6|2
5+

√
13

ejβ

⎞
⎠ (

λ6 1
−ζ2

3λ−1
6 m2

)
,

where α and β are arbitrary real numbers, λ1 =
±ζ3+

√
ζ2
3+4

2m
,

λ2 = ±1+
√

1+4ζ3
2m

, λ3 =
±ζ2

3+
√

ζ3+4

2m
, λ4 =

±1+
√

1+4ζ2
3

2m
, λ5 =

±1+
√

ζ2
3+4ζ3

2m
and λ6 =

±ζ2
3+

√
ζ3+4ζ2

3
2m

with m = ±1,±ζ3 and
±ζ2

3 .
(3) The third largest gain is |E3| = p√

10+2
√

21
and the matri-

ces are given by

E31 =

√
p

2

⎛
⎝
√

2
1+|µ1|2 ejα 0

0 2
√

1+|µ1|2
5+

√
21

ejβ

⎞
⎠ (

µ1 1
µ−1

1 m2

)
,

E32 =

√
p

2

⎛
⎝
√

2
1+|µ2|2 ejα 0

0 2
√

1+|µ2|2
5+

√
21

ejβ

⎞
⎠ (

µ2 1
µ−1

2 m2

)
,

E33 =

√
p

2

⎛
⎝
√

2
1+|µ3|2 ejα 0

0 2
√

1+|µ3|2
5+

√
21

ejβ

⎞
⎠ (

µ3 1
ζ3µ

−1
3 m2

)
,

E34 =

√
p

2

⎛
⎝
√

2
1+|µ4|2 ejα 0

0 2
√

1+|µ4|2
5+

√
21

ejβ

⎞
⎠ (

µ4 1
ζ3µ

−1
4 m2

)
,

E35 =

√
p

2

⎛
⎝
√

2
1+|µ5|2 ejα 0

0 2
√

1+|µ5|2
5+

√
21

ejβ

⎞
⎠ (

µ5 1
ζ2
3µ−1

5 m2

)
,

E36 =

√
p

2

⎛
⎝
√

2
1+|µ6|2 ejα 0

0 2
√

1+|µ6|2
5+

√
21

ejβ

⎞
⎠ (

µ6 1
ζ2
3µ−1

6 m2

)
,

where α and β are arbitrary real numbers, µ1 =
±ζ3+

√
ζ2
3−4

2m
,

µ2 =
±ζ2

3+
√

ζ3−4

2m
, µ3 = ±1+

√
1−4ζ3

2m
, µ4 =

±ζ3+
√

ζ2
3−4ζ3

2m
,

µ5 =
±1+

√
1−4ζ2

3
2m

, µ6 =
±ζ2

3+
√

ζ3−4ζ2
3

2m
with m = ±1,±ζ3 and

±ζ2
3 . �

Following the idea of Theorem 1 and Theorem 2, we can charac-
terize all two by two full diversity integer generating matrices with
the fouth largest gain, the fifth largest gain and so on if necessary.
Therefore, we can classify all full diversity integer generating ma-
trices according to their gains.

3. OPTIMAL INTEGER LINEAR SPACE-TIME CODES

In this section, we apply the full diversity integer generating matri-
ces designed in the previous section to a MIMO system with two
transmitter antennas and two receiver antennas. We find optimal
codes both in Gaussian ring and the Eisentein ring.

Definition 2 Let s = [s1, s2, s3, s4]
T ∈ I

4
n. A codeword ma-

trix XG(s) =

(
x11 x12

x21 x22

)
is said to be a norm form integer

space-time code if(
x11

x22

)
= G1

(
s1

s2

)
and

(
x12

x21

)
= G2

(
s3

s4

)
,

where G1 and G2 are two by two full diversity integer generating
matrices with the same power p. �
Now, thanks to the linearity [19], [20] of the norm form integer
space-time codes, our task is to find a pair of full diversity integer
generating matrices G1 and G2 such that the minimum determi-
nant of XH

G (s)XG(s) is maximized [21]; i.e.,

max
tr(GH

1 G1)=tr(GH
2 G2)=p

min
s�=0,s∈I4n

det
(
XH

G (s)XG(s)
)

(7)

The following two theorems give the optimal solutions of the
above optimization problem.

Theorem 3 For the Gaussian ring, we have an upper bound,

min
s �=0,s∈I4n

| det(XG(s)| ≤ |G3| =
p

2
√

5

with the equality holding when G1 = G and G2 = ζ8 G, where

G =

√
p

2

⎛
⎝

g√
1+g2

1√
1+g2

− 1
g

√
1+g2

5

√
1+g2

5

⎞
⎠ (8)

with the golden number g =
√

5±1
2

. �
Dayal and Varanasi [8] proved that their code, the golden code [9];
i.e, code (8), is optimal among all real rotation generating matrices.
Our Theorem 3 shows that the golden code is also optimal among
all integer generating matrices with the same power.

Theorem 4 For the Eisentein ring, we have an upper bound,

min
s �=0,s∈I4n

| det(XG(s))| ≤ |E3| =
p√

10 + 2
√

21

with the equality holding when G1 = E and G2 = ζ12E , where E
is given by

E =

√
p

2

⎛
⎝
√

2
1+|µ|2 0

0 2
√

1+|µ|2
5+

√
21

⎞
⎠ (

µ 1
µ−1 ζ3

)

with µ = ζ6+
√

ζ3+4ζ6
2

. �
If we define the minimum determinant of the infinite code C [9] as

δmin(C) = min
X∈C,X �=0

| det(X )|2 (9)

then, Theorem 3 and Theorem 4 tell us that δmin(Cg) = p2

20
and

δmin(Ce) = p2

10+
√

21
, where Cg and Ce denote all codeword sets

generated by G and E , respectively. Since δmin(Cg) < δmin(Ce),
the error performance of the optimal code in the Eisentein ring is
better than that of the golden code in the Gaussian ring.
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Fig. 1. The performance comparison of the average our codeword
error rate with the average error rate of the codewords in [8], [9].

4. SIMULATIONS

In this example, to demonstrate our optimal code given in Theo-
rem 4, we consider a coherent MIMO system with two transmitter
antennas and two receiver antennas. Fig. 1 shows that the error
performance comparison of our code with those in [8], [9].

5. CONCLUSION

In this paper, we characterized all integer generating matrices for
two transmitter antennas. Employing this matrix family to sepa-
rately design space-time codes layer by layer for two transmitter
antenna and two receiver antenna MIMO systems, we proved that
the Golden code is optimal among all integer generating matrices
with the same power in the Gaussian ring in the sense of maxi-
mizing the minimum determinant of codeword matrices. Also, we
obtained the optimal code family in the Eisentein ring, the coding
gain of which is greater than that of the golden code.
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