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Abstract— In this paper, we present a closed-form solution
for blind multiple-input multiple-output (MIMO) finite impulse
response (FIR) channel estimation driven by colored sources
whose second-order statistics (SOS) are assumed to be known
a priori. The proof for the uniqueness of the system solution is
provided. Numerical simulation results are presented to illustrate
the performance of the proposed algorithm.

I. INTRODUCTION

In this paper, we consider the problem of blind MIMO
FIR channel estimation driven by colored signals. Of spe-
cific interest, we focus on the case where the second order
statistics of the input signals are known a priori. Colored
sources with known statistics indeed occur in practice. For
example, colored sources arise as a result of channel encoding
[1], and the knowledge of the encoding scheme alone will
provide the required source statistics to the receiver. Moreover,
the correlative filters can be utilized at the transmitters to
induce distinct spectral patterns to the source signals [2].
Interestingly, there have been some works [3]–[5] on blind
MIMO FIR channel identification when the input signals are
colored but with unknown statistics. However, failing to utilize
the information of input signals statistics severely affects the
estimator’s performance. Previous works that address the same
problem as in this paper include [6], [7] for the SIMO case and
[2] for the MIMO case. They all admit closed-form solutions.
Recently, a frequency-domain nonlinear iterative method [8]
was proposed for blind MIMO channel estimation with colored
sources. Due to its nonlinear nature, the method may obtain
better estimate as compared to existing linear methods, but it
needs a good initialization to minimize the problem of local
minima.

This paper proposes a new method for blind MIMO FIR
system identification by utilizing the second-order statistics of
the received data. By exploiting the new derived properties
of the companion matrices that are constructed from the
inherent structural relationship between source autocorrelation
matrices, we provide an original proof for the uniqueness
of the system solution, which servers as a theoretical basis
for our new method. We adopt the following notations. The
notations [·]T , [·]∗, [·]H and [·]† stand for matrix transpose,
complex conjugate, matrix Hermitian transpose and matrix

pseudo-inverse, respectively. E[·] represents the mathematical
expectation. ‖X‖ (‖x‖) denotes the Frobenius norm (vector
2-norm) of matrix X (vector x). The symbol J1 (J1) stands
for the one-lag down (up) shift square matrix whose first sub-
diagonal entries below (above) the main diagonal are unity,
whereas all remaining entries are zero; ei denotes the unit
column vector with its ith entry equal to one, and its other
entries equal to zero. Note that the dimensions of J1, J1 and
ei are not specified here but dependent on the exact place
where they are used. Let C

n×m and C
n denote the set of

n × m matrices and the set of n-dimensional column vectors
with complex entries, respectively.

II. SYSTEM MODEL AND BASIC ASSUMPTIONS

Consider a noisy linear MIMO channel with p in-

puts, si(n), i ∈ {1, 2, · · · , p}, and q outputs x(n)
�
=

[x1(n) · · · xq(n)]

x(n) =
p∑

i=1

Li∑
l=0

hi(l)si(n − l) + w(n) (1)

where {hi(l)} denotes the multichannel filter corresponding
to the ith user, Li represents the channel order correspond-
ing to the ith user. By stacking the channel output vector

x(n) and defining �x(n)
�
= [xT (n) xT (n − 1) . . . xT (n −

N)]T , �si(n)
�
= [si(n) si(n − 1) · · · si(n − N − Li)]T and

�w(n)
�
= [wT (n) wT (n − 1) . . . wT (n − N)]T , we can

rewrite Eqn.(1) as

�x(n) =
p∑

i=1

Hi�si(n) + �w(n) = H�s(n) + �w(n) (2)

where Hi ∈ C
(N+1)q×di is a block Toeplitz matrix written as

follows with di
�
= N + Li + 1

Hi
�
=

⎡
⎢⎢⎢⎢⎣

hi(0) . . . hi(Li) 0 . . . 0

0 hi(0) . . . hi(Li)
. . .

...
...

. . .
. . .

. . .
. . . 0

0 . . . 0 hi(0) . . . hi(Li)

⎤
⎥⎥⎥⎥⎦
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H �
=

[
H1 H2 · · · Hp

]

�s(n)
�
=

[
�sT

1 (n) �sT
2 (n) · · · �sT

p (n)
]T

Some basic assumptions are adopted as follows. A1) The
number of sources is known a priori, and there are more
outputs than inputs, i.e. q > p. A2) Channel is irreducible
and column-reduced. A3) The channel order of each source is
assumed to be known a priori. A4) The sources are zero-mean
wide-sense stationary colored signals with the knowledge of
input statistics being available. The sources are uncorrelated
with each other. A5) Additive noises are spatially and tempo-
rally white noises, and they are statistically independent of the
sources. As a consequence of A2, the MIMO channel matrix
H is full column rank if the stack number N is chosen to
satisfy N + 1 ≥

∑p
i=1 Li [9].

III. PROPOSED CHANNEL ESTIMATION METHOD

We begin by defining the source autocorrelation matrices as

Rsi [k]
�
= E[�si(n)�sH

i (n − k)] (3)

Rs[k]
�
= E[�s(n)�sH(n − k)] (4)

By invoking the assumption A4, we have

Rs[k] = diag(Rs1 [k],Rs2 [k], · · · ,Rsp [k]) (5)

Also, in order to simplify the presentation of the proposed
channel identification method, we assume the noiseless case.
Thus the autocorrelation matrix of the received data �x(n) with
lag k can be expressed as

Rx[k] = HRs[k]HH (6)

Our goal is to find an estimate of H from Eqn.(6) by using
the knowledge of Rs[k]. We commence by introducing the
following lemma.

Lemma 1: Given Rx[k] = HRs[k]HH , H is full column
rank and Rs[0] is invertible, we have

Rx[k]R†
x[0] = HRs[k]R−1

s [0]H† (7)

Rx[k]R†
x[0]H = HRs[k]R−1

s [0] (8)
Proof: To admit lemma 1, we need to prove

R†
x[0] = (HH)†R−1

s [0]H†

Typically, A† is defined to be the unique matrix T that satisfies
the four Moore-Penrose conditions: [10]

(i) ATA = A (iii) (AT)H = AT
(ii) TAT = T (iv) (TA)H = TA

Therefore we only need to prove that R†
x[0] defined above

satisfies the four Moore-Penrose conditions. This can be easily
proved and thus omitted here.

For convenience, let

Υ2k−1
�
= Rx[k]R†

x[0] Υ2k
�
= Rx[−k]R†

x[0]

Θ2k−1
�
= Rs[k]R−1

s [0] Θ2k
�
= Rs[−k]R−1

s [0]

We can therefore re-express Eqn.(8) (choose K ≥ k ≥ 1) as

ΥlH = HΘl ∀ l ∈ {1, . . . , 2K} (9)

and further, for every l ∈ {1, . . . , 2K}, we have the fol-

lowing by exploiting the block diagonal structure of Θl
�
=

diag(Θl,1,Θl,2, · · · , Θl,p)

ΥlHi = HiΘl,i ∀ i ∈ {1, . . . , p} (10)

where Θl,i
�
= Rsi [k̄]R−1

si
[0], k̄ = (l+1)/2 if l is odd and k̄ =

−l/2 if l is even. For each i ∈ {1, . . . , p}, the above equation
can be used to identify the channel convolution matrix of user
i, i.e. Hi, since the knowledge of Θl,i is known a priori and
the information of Υl can be obtained from the second-order
statistics of the observed data. By exploiting the block Toeplitz
structure of Hi, we can rewrite Eqn.(10) as

T1[Υl]hi = T2[Θl,i]hi (11)

where hi
�
=

[
hT

i (0) . . . hT
i (Li)

]T
, T1[·] and T2[·] respec-

tively represent a certain transformation on the bracketed ma-
trix. Therefore we may estimate hi by the following criterion

ĥi = arg min
‖u‖=1

2K∑
l=1

‖
[
T1[Υl] − T2[Θl,i]

]
u‖2 (12)

The above optimization has a closed-form solution which can
be obtained as the right singular vector associated with the
smallest singular value. However, this criterion is trivial if the
solution of Eqn.(11) is not unique, i.e. there exist other non-
zero vectors, gi, that are linearly independent of hi and also
satisfy T1[Υl]gi = T2[Θl,i]gi for any l ∈ {1, . . . , 2K}. Hence
we are faced with the following two problems. First, whether
or not the solution of Eqn.(11) is unique (up to a scalar factor).
Second, under what conditions the solution of Eqn.(11) will be
unique. These two problems are studied in the following and
we will establish the uniqueness of the solution to Eqn.(11)
by utilizing only Rx[0] and Rx[±1] and the knowledge of
Rs[0] and Rs[±1], i.e. the uniqueness of the solution can be
guaranteed by choosing l = 1, 2 in Eqn.(11).

We begin by exploiting the inherent structural relationship
between Rsi [0] and Rsi [±1] for any i ∈ {1, . . . , p}. It can be
readily seen that for each source si, the last di − 1 rows of
Rsi [1] are the first di − 1 rows of Rsi [0], and the first di − 1
rows of Rsi [−1] are the last di −1 rows of Rsi [0]. Hence we
can establish the following relationship

Rsi [1] = J1Rsi [0] + e1rH
i1 (13)

Rsi [−1] = J1Rsi [0] + edir
H
i2 (14)

where rH
i1

�
= eH

1 Rsi [1] and rH
i2

�
= eH

di
Rsi [−1]. Using

Eqn.(13 − 14), we can re-express Θ1,i and Θ2,i as follows

Θ1i
�
= Rsi [1]R−1

si
[0]

�
= J1 − e1�α

H
i (15)

Θ2i
�
= Rsi [−1]R−1

si
[0]

�
= J1 − edi

�βH
i (16)
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where Θ1,i, Θ2,i ∈ C
di×di and �αi and �βi can be obtained as

�αi =
[

αi,1 · · · αi,di

]T = −R−1
si

[0]ri1 (17)

�βi =
[

βi,1 · · · βi,di

]T = −R−1
si

[0]ri2 (18)

Observe that for each i ∈ {1, . . . , p}, both Θ1i and Θ2i

are companion matrices. Due to their special structures, these
companion matrices have some important properties we shall
exploit in the following.

Lemma 2: Given that Y ∈ C
di×dj satisfies the following

two equations

(a) Θ1iY = YΘ1j (b) Θ2iY = YΘ2j (19)

where i, j ∈ {1, . . . , p} and the modulus of the last entry in
�αj is not equal to one, i.e. |αj,dj | �= 1, we have

• If di = dj , Θ1i = Θ1j and Θ2i = Θ2j , then Y = λI,
where λ could be any complex scalar including zero.

• If di = dj , Θ1i �= Θ1j and Θ2i �= Θ2j , then Y = 0.
• If di > dj , then Y = 0.

• If di < dj , and |αi,mi | �= |αj,dj−ti |, where ti
�
= di −mi,

αi,mi
denotes the last non-zero entry in �αi, then Y = 0.

The condition |αi,mi | �= |αj,dj−ti | can be removed if
there exists a non-zero entry for αj,k, k ∈ {dj − ti +
1, . . . , dj}.
Proof: This can be proved from first principles by

considering the entries of G1
�
= Θ1iY = YΘ1j and G2

�
=

Θ2iY = YΘ2j , and using the relationships in Eqn.(13− 18).
The details can be found in [11] and will not be given
here. Interested readers can obtain this technique report by
contacting the authors.

The significance of Lemma 2 not only lies in the fact that
it provides a theoretical basis for our original proof for the
uniqueness of the system solution, but also it establishes the
identifiability conditions imposed on the input colored sources.
We describe these identifiability conditions as follows

• IC1) The modulus of the last entry in each �αi is not
equal to one, i.e. |αi,di | �= 1 for each i ∈ {1, . . . , p}.
This condition can be guaranteed if for each user si, the
source autocorrelation matrix Rsi [0] is positive definite.
This is because |αi,di | will be strictly less than one under
the assumption that Rsi [0] is positive definite [6].

• IC2) Sources have distinct second order statistics (power
spectrum) such that for each pair of sources {si, sj},
where dj ≥ di, the corresponding {�αi, �αj} does not
satisfy the following two conditions simultaneously

(i) |αi,mi | = |αj,dj−ti |
(ii) αj,k = 0 ∀ k ∈ {dj − ti + 1, . . . , dj}

This identifiability condition can be assured with prob-
ability one in practice when the sources have distinct
second order statistics.

We now prove the uniqueness of the system solution to
Eqn.(11) by utilizing the above lemma. We, firstly, prove that
the solution to Eqn.(10) is unique (up to a scalar factor). The

problem is formulated as follows: Given that (note that the
following two equations are directly from Eqn.(7))

(a) Υ1 = HΘ1H† (b) Υ2 = HΘ2H† (20)

If H is full column rank and the input colored sources satisfy
the identifiability conditions IC1–IC2, we need to prove that
for each i ∈ {1, . . . , p}, any non-zero matrix Gi that has the
same block Toeplitz structure as Hi and also satisfies Eqn.(10)
for l = 1, 2, i.e. Υ1Gi = GiΘ1,i and Υ2Gi = GiΘ2,i, can be
written as Gi = λiHi, where λi is a non-zero complex scalar.

Proof: Suppose a non-zero matrix Gi ∈ C
(N+1)q×di with

the same block Toeplitz structure as Hi also satisfies Eqn.(10)
for l = 1, 2, then we have

Υ1Gi = GiΘ1i ⇒ HΘ1H†Gi = GiΘ1i ⇒ Θ1H†Gi = H†GiΘ1i

Υ2Gi = GiΘ2i ⇒ HΘ2H†Gi = GiΘ2i ⇒ Θ2H†Gi = H†GiΘ2i

Let X
�
= H†Gi

�
=

[
XT

1 · · · XT
p

]T
, where Xk ∈ C

dk×di ,
then we have

Θ1kXk = XkΘ1i ∀ k ∈ {1, . . . , p} (21)

Θ2kXk = XkΘ2i ∀ k ∈ {1, . . . , p} (22)

Since the input sources satisfy the identifiability conditions
IC1–IC2, by applying the results in Lemma 2, we know that
Xk = 0 for any k �= i and Xk = λiIi for k = i, i.e.

H†Gi =
[

0 · · · λiIi · · · 0
]T �

= λiEi (23)

Therefore we only need to prove that the solution of Gi that
satisfies Eqn.(23) is unique and Gi = λiHi. Notice that Gi has

the same block Toeplitz structure as Hi. If we write H† �
=

[V0 · · · VN ], we can transform H†Gi = λiEi as

V

⎡
⎢⎣

gi(0)
...

gi(Li)

⎤
⎥⎦ = vec(λiEi) (24)

where V ∈ C
di(d1+···+dp)×(Li+1)q is a block Toeplitz matrix

written as

V �
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

V0 0 · · · 0
... V0

. . .
...

VN

. . .
. . . 0

0 VN

. . . V0

...
. . .

. . .
...

0 · · · 0 VN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Obviously, from Eqn.(24) we know that Gi can be uniquely
determined if V has full column rank. Recalling Theorem 1
in [12], V has full column rank if the following condition
holds, i.e. there exists a nonzero z0 (including ∞) such that
the polynomial matrix V (z0) has full column rank, where

V (z0)
�
= V0 + V1z

−1 + · · ·+ VNz−N . When channel order
L ≥ 1, H† can be considered to be a randomly generated
matrix. We can assure that this mild condition can be satisfied
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TABLE I: Symbol Error Rates (SER) Versus SNR
Ts = 1600 Ts = 1200 Ts = 800

SNR(dB) Proposed Algorithm SIF Proposed Algorithm SIF Proposed Algorithm SIF
user 1 user 2 user 1 user 2 user 1 user 2 user 1 user 2 user 1 user 2 user 1 user 2

25 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0016 0.0013
22 0.0000 0.0000 0.0009 0.0006 0.0001 0.0000 0.0037 0.0028 0.0009 0.0000 0.0159 0.0132
19 0.0018 0.0000 0.0220 0.0169 0.0017 0.0000 0.0296 0.0228 0.0034 0.0000 0.0490 0.0341
16 0.0043 0.0001 0.0769 0.0571 0.0074 0.0002 0.0874 0.0664 0.0221 0.0045 0.1007 0.0663
13 0.0299 0.0119 0.1472 0.1074 0.0522 0.0210 0.1637 0.1089 0.0994 0.0657 0.1725 0.1192
10 0.1313 0.1145 0.2132 0.1566 0.1924 0.1684 0.2280 0.1643 0.2865 0.2667 0.2475 0.1798

with probability one. Thus we can conclude that the solution
of Gi is unique and Gi = λiHi. Note that λi can not be zero
because Gi would be zero under the condition λi = 0, which
contradicts our previously made assumption Gi �= 0. The proof
is completed here.

Since Eqn.(10) and Eqn.(11) can be derived from each
other, it implies that the solution to Eqn.(11) is unique up
to a scaling constant of the “true” channel hi. Therefore hi

can be estimated by the criterion in Eqn.(12) with K = 1.

IV. SIMULATION RESULTS

We now present simulation results to illustrate the perfor-
mance of our proposed algorithm. We compare our method
to the second-order statistics isometry fitting (SIF) method
proposed in [2]. Our method directly estimate H by matching
Rx[k]R†

x[0] and HRs[k]R−1
s [0]H†, whilst [2] involves a two-

step estimation algorithm. In our simulations, we consider p =
2 sources which are independent and identically distributed
(i.i.d.) information sequences with 4-QPSK digital modula-
tion format. To generate the colored sources, we pass these
two i.i.d. information sequences through correlative filters
prior to transmission. The correlative filters are chosen to be
f1(z) = k1(1− 1

4e−iπ/2z−1) and f2(z) = k2(1− 1
2eiπ/4z−1)

respectively for user 1 and user 2, where k1 and k2 are
normalizing constants to ensure unit-power outputs. A wireless
communication channel with these two colored user signals
arriving at q = 3 antennas is randomly generated and given as

[h(0) · · · h(3)] =

⎡
⎢⎢⎢⎣

−0.38 0.26 −0.06 −0.02
0.09 0.02 −0.11 0.03
−0.26 −0.17 0.13 0.20
−0.08 0.41 0.09 −0.08
0.04 −0.26 −0.04 0.26
−0.47 0.03 −0.01 0.24

⎤
⎥⎥⎥⎦

where h(l)
�
=

[
hT

1 (l) hT
2 (l)

]T
. In the simulations, the channel

order is assumed known a priori and the stack number
(smoothed factor) N is chosen to be 6. Once the channel
has been estimated, the minimum mean-square-error (MMSE)
equalizers can be computed as EMMSE = Ĥ†(I− σ2

wR̂−1
x [0]).

The equalizers per user with equalization delay equal to 3 are
used. The scalar ambiguity of equalizers is removed before
we perform the equalization. After channel equalization, the
filtered information sequences (the outputs after the informa-
tion sequences passing through the correlative filters) of each
source are recovered and we can further detect the information
sequences by adopting the Viterbi algorithm-based maximum
likelihood detector. We present the equalization performance

of the algorithms in the following table. The results are
averaged over 200 Monte Carlo runs. In Table I, we show
the symbol error rates (SER) associated to the two sources as
a function of SNR and the number of data samples Ts used for
channel estimation. It can be seen that our proposed algorithm
presents a clear advantage over SIF in terms of SER.

V. CONCLUSION

We present a new SOS-based method that admits a closed-
form solution for blind MIMO FIR channel estimation driven
by colored sources. An original proof for the uniqueness of
the closed-form system solution is provided by exploiting the
inherent structural relationship between Rs[0] and Rs[±1] and
the derived properties of the companion matrices. Simulation
results show that the new method compares favorably with the
existing SOS-based method [2].
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