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ABSTRACT
A novel blind symbol detection algorithm is proposed for time-
selective fading multiple-input-multiple-output (MIMO) sys-
tems, whose every channel is described as a second-order
autoregressive (AR) model. This algorithm employs the parti-
cle filter as the demodulator stage in turbo receivers because
the particle filter has the nature characteristics of soft-input
soft-output. Moreover, the particle filter has the advantage of
parallel computation. Computer simulation results demonstrate
the performance of the proposed algorithm.

1. INTRODUCTION

Recently, multiple-input-multiple-output (MIMO) systems re-
ceived much attention because of its significant boost in
performance for high data-rate wireless communications. Its
blind symbol detection and equalization also arise in a wide
variety of communication and signal processing applications.
Among various blind algorithms, what based on the particle fil-
ter [1] are very particular for they can be computed in parallel
and acted as the channel demodulator in a turbo receiver for
their natural soft-input soft-output (SISO) characteristics.

Among the proposed particle filtering algorithm for the wire-
less communications, [2] applied the particle filter (sequential
Monte Carlo, SMC) into the turbo receiver, achieving the good
performance. But [2] only considered that the channel was
slow-fading, i.e., time-invariant. [3][4] proposed the particle fil-
ter in time-selective fading modeled by wavelet bases or the
AR model, respectively. Nevertheless, those two methods only
considered single-input single-output systems.

In this paper, a novel particle filter is proposed for time-
selective MIMO systems, and it acts as a stage in the turbo
receiver. Every channel fading is described as a second-order
AR model, which can elegantly describe the time-selective
fading. Computer simulation results verify and validate the
proposed blind symbol detection algorithm.

2. SYSTEM MODEL

* Partially supported by the National Natural Science Foundation (No.
60272071) and the Research Fund for Doctoral Program of Higher Edu-
cation (No. 20020698024) of China.

Consider an MIMO system with N transmit and M receive
antennas. The transmitted symbols are encoded by the vertical
Bell Lab’s space-time (VBLAST) code scheme. The symbols
are assumed to be independent both in time and space, and they
belong to a finite alphabet set B = {b1, . . . , b|B|}. On the m-th
receive antenna, the received signal at time t can be written as

ym,t =
N∑

n=1

hm,n,tsn,t + um,t (1)

where hm,n,t is the complex fading coefficient between the
m-th receive antenna and the n-th transmit one; sn,t is
the transmitted symbol from transmit antenna n at time t;
um,t is the additive white Gaussian noise (AWGN), and
um,t ∼ CN (0, σ2

u).
According to [4], the time-selective channel between the

m-th receive antenna and the n-th transmit one can be modeled
as a second AR process such that

hm,n,t = −α1,m,nhm,n,t−1 −α2,m,nhm,n,t−1 + vm,n,t (2)

where vm,t ∼ CN (0, σ2
v) and α1,m,n and α2,m,n are the known

model coefficients which can be determined by fitting the auto
correlation function [5]; or by the physical characteristics of the
channel [6].

(2) can be rewritten in the matrix-vector form

Hm,t = DHm,t−1 + gVm,t (3)

where Hm,t = (hm,1,t, . . . , hm,N,t, hm,1,t−1. . . . , hm,N,t−1)
T

with size 2N × 1; g = ( IN×N 0 )T with size 2N × N ;
Vm,t = (vm,1,t, . . . , vm,N,t)

T with size N × 1, and

D =

(
D1 D2

0 IN×N

)

with dimensions 2N×2N , D1 = diag{−α1,m,1, . . . ,−α1,m,N},
and D2 = diag{−α2,m,1, . . . ,−α2,m,N}.

Also, (1) can be rewritten as

ym,t = stg
T Hm,t + um,t (4)
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where st = (s1,t, . . . , sN,t) with dimensions 1 × N represents
the transmitted symbols at time t.

3. PARTICLE FILTERING

3.1. General framework

A general framework for the particle filter is briefly explained as
follows: Consider a dynamic system described as the following
state-space form

state equation: zt = ft(zt−1,vt)

observation equation: yt = gt(zt,ut) (5)

where zt, yt, ut, and vt are the state variable, the observation,
the state noise and the observation noise at time t, respectively.
Now let Zt = (z0, . . . ,zt) and Yt = (y0, . . . ,yt). Our object
is to estimate Zt sequentially from the observation Yt. Based
on the Bayes theorem, the a posteriori probability density
function (PDF) p(zt|Yt) is the key entity of the optimal
solution. However, this PDF may be difficult to obtain and the
followed calculation could be intractably complex. To solve
it, the true a posteriori PDF can be approximated as discrete
weighted values. According to [7], we have

P (Zt|Yt) ≈
J∑

j=1

w
(j)
k δ(Zt −Z

(j)
t ) (6)

where {Z
(j)
t , w

(j)
t } is a random measure of the a posteriori

PDF p(Zt|Yt), {Z
(j)
t } is a set of support points, w

(j)
t are the

samples of p(Zt|Yt), and chosen according to the principle of

importance sampling and normalized such that
∑

j w
(j)
t = 1.

However, direct sampling from p(Zt|Yt) is often not
available because this distribution is usually difficult to obtain.
To circumvent this, we can substitute the a posteriori PDF by
a new proposal density q(Zt|Yt) to make samples generated
easily. q(·) is also called importance density. Then, the new
weights can be calculated as

w
(j)
k ∝

p(Z
(j)
t |Yt)

q(Z
(j)
t |Yt)

After using the suitable importance density, the particle
filtering can be implemented sequentially [7]. Generally, the
particle filter can be illustrated as follows.

Suppose that at time t − 1, we have obtained J sets of

properly weights samples Z
(j)
t−1 and their associated weights

w
(j)
t−1. When the new observation yt arrives, the update of the

sample sets from t − 1 to t is as follows.
For j = 1, . . . , J

. Draw a sample Z
(j)
t from the importance density

q(zt|Z
(j)
t−1,Yt) and set Z

(j)
t = {Z

(j)
t−1, z

(j)
t }.

. Calculate the importance weight by

w̃
(j)
t = w

(j)
t−1

p(Z
(j)
t |Yt)

p(Z
(j)
t |Yt)q(zt|Z

(j)
t−1,Yt)
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Fig. 1 Transmitter

. Normalize the weight w
(j)
t = w̃

(j)
t /

∑J
j=1 w̃

(j)
t .

The choice of the important density is really important.
From [7] we know, the bad choice will lead to the degeneracy
phenomenon [7], i.e., all the weights but one of the particles
are near zero after a few iterations, implying that it costs a
large computational effort to update particles whose contribution
to the a posteriori PDF p(zt|Yt) is almost zero. On the
contrary, good choice can minimize the variance of the weights.
And then, more effective samples are generated and the better
estimation is achieved.

According to [4][7], the optimal importance density is the a

posteriori importance density, defined as q(zt|Z
(j)
t−1,Yt)

�
=

p(zt|Z
(j)
t−1,Yt). Nevertheless, the direct use of the optimal

importance density is impossible except two cases [7]: 1) zt

is a member of finite set, or 2) p(zt|Z
(j)
t−1,Yt) is Gaussian.

Luckily, all the two conditions are satisfied in our problem.
Therefore, the a posteriori importance density is our choice.
And the associated importance weights are calculated as

w
(j)
t ∝ w

(j)
t−1p(Zt|Y

(j)
t−1,Zt−1) (7)

3.2. Application in our scheme

Consider the MIMO system described in section 2. Denote

St
�
= {s0, . . . , st} and Yt

�
= {y0, . . . ,yt}, where yt =

(y1,t, . . . , yM,t) is the whole received signal vector at time t,

and Ym,t
�
= {ym,0, . . . , ym,t}. According to (3)(4), the state

variable here is st, and the importance density is chosen as the
a posteriori importance density

q(s
(j)
t |S

(j−1)
t ,Yt)

�
= p(s

(j)
t |S

(j−1)
t ,Yt) (8)

where s
(j)
t is a sample drawn by the particle filter at time t.

And we have

p(s
(j)
t = bi|S

(j−1)
t ,Yt) ∝ p(yt|S

(j)
t−1,Yt−1, st = bi)

=

M∏
m=1

p(ym,t|S
(j)
t−1, st = bi,Ym,t−1)p(st = bi|S

(j)
t−1,Yt−1)

�
= a

(j)
t,i (9)

where bi ∈ BN .
Then, the importance weight can be calculated as

w
(j)
t ∝ w

(j)
t−1p(Yt|S

(j)
t−1,Yt−1)

= w
(j)
t−1

∑
bi∈BN

p(yt|S
(j)
t−1,Yt−1, st = bi)

= w
(j)
t−1

∑
bi∈BN

a
(j)
t,i (10)
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Fig. 2 Turbo receiver of RSC codes

Both (9) and (10) require computing p(ym,t|S
(j)
t−1, st =

bi,Ym,t−1), which is the likelihood function after marginal-
izing out Hm,t, and can be obtained from the predictive
procedure of the Kalman filter as

p(ym,t|S
(j)
t−1, st = bi,Ym,t−1) ∼ N (µ

(j)
t ,Σ

(j)
t )

where
µ

(j)
t = stg

T Dµ
(j)
t−1

Σ
(j)
t = stg

T Ξ
(j)
t gsT

t + σ2
u

where Ξ
(j)
t is the covariance of the channel matrix H

(j)
m,t.

Also, H
(j)
m,t denotes the sample of the m-th channel matrix

at time t, which can be calculated by the Kalman filter

H
(j)
m,t = DH

(j−1)
m,t + K

(j)
t (ym,t − µ

(j)
t ) (11)

K
(j)
t = Ξ

(j)
t g(s

(j)
t )T /Σ

(j)
t (2N×1)(12)

P
(j)
t = (I−K

(j)
t s

(j)
t gT )Ξ

(j)
t (2N×2N)(13)

Ξ
(j)
t = DP

(j)
t−1D

H
+ ggT σ2

v (2N×2N)(14)

Finally, the a posteriori probability of the transmitted
symbols at time t can be calculated by

p(st = bi|Yt) =
J∑

j=1

p(s
(j)
n = bi)w

(j)
t (15)

Then, the proposed blind particle filtering symbol detector is
summarized as:

(1) Initialization: Set the initial channel matrix, whose every
element is complex Gaussian distribution with mean zero

and variance 1. All importance weights are set to w
(j)
−1 =

1, j = 1, . . . , J .
The following steps are cycled at the t-th recursion (t =

0, . . . , T ), For j = 1, . . . , J

(2) For n = 1, . . . , N and every bi ∈ BN , compute a
(j)
t,i and

draw a sample s
(j)
t from BN according to (9).

(3) Compute the importance weight w
(j)
t according to (10).

(4) For m = 1, . . . ,M , update the a posteriori mean and

covariance of H
(j)
m,t according to (11)-(14).

(5) Compute the a posteriori probability of st according to
(15).

4. TURBO RECEIVER

As shown previously, the particle filter not only employs the a

priori symbol probability p(st = bi|S
(j)
t−1,Yt−1), but outputs

the a posteriori symbol probability p(st = bi|Yt) as well.
Then it can perfectly act as the demodulator stage in the turbo
receiver because of its nature of SISO. Furthermore, it makes
the turbo receiver not need the channel information any more,
which is very useful when the channel is fast-fading.

The detail of the transmitter and turbo receiver is illustrated
in Fig. 1 and 2. The turbo receiver includes two stages: a
particle filter and a channel decoder which are separated by a
deinterleaver and an interleaver.

In this paper, two codes are employed to demonstrate the
validity and effectivenss of the proposed algorithm. The two
codes are the recursive system convolution (RSC) code and the
low density parity check (LDPC) code, respectively, To the
RSC code, an MAP channel decoding algorithm is exploited.
Let Λ1[cπ(t)] and Λ2[c(t)] be the output a posteriori log-
likelihood ratio (LLR) of the particle filter and channel decoder,
respectively. Λ1[cπ(t)] is defined and calculated as [2]

Λ1[cπ(t)]
�
= log

p(cπ(t) = 1|Y)

p(cπ(t) = 0|Y)

= log
p(Y|cπ(t) = 1)

p(Y|cπ(t) = 0)︸ ︷︷ ︸
λ1[cπ(t)]

+ log
p(cπ(t) = 1)

p(cπ(t) = 0)︸ ︷︷ ︸
λ2[cπ(t)]

(16)

where λ2[cπ(t)] is the a priori LLR, calculated by the channel
decoder in the previous iteration; λ1[cπ(t)] is the extrinsic
information outputted by the particle filter. And then it
deinterleaved and fed back to the channel decoder as the a
priori information.

Also, the output a posteriori LLR of the channel decoder
is given by

Λ2[ct]
�
= log

p(ct = 1|λ1[bl])

p(ct = 0|λ1[bl])
= λ2[bi] + λ1[bi] (17)

where the extrinsic information λ2[bi] outputted by the channel
decoder is fed to the particle filter as the a priori information,
and the a priori probability need by the particle filter is given
by

p(st = bi) =
N∏

n=1

p(st,n = bi) (18)

where p(st,n = 1) = 0.5 ∗ (1 + tanh(0.5 ∗ λ2[st,n])).
At the last iteration, the LLRs are made hard decision before

output.
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The receiver of the LDPC code is similar to the above one,
but much simpler. Because the LDPC decoder can input and
output the probability of the transmitted symbols directly, the
LLR calculator and symbol probability calculator can be fully
omitted.

5. SIMULATIONS

Extensive computer simulations have been conducted to demon-
strate the effectiveness of the proposed symbol detector. In
simulations, the differential binary phase shift keying (DBPSK)
is exploited to overcome the phase ambiguous [4]. The
coefficients of the AR model are −α1,m,n = −1.989710,
−α2,m,n = 0.989745, (m = 1, . . . ,M ; n = 1, . . . , N ), reflect-
ing a VBLAST system of the Doppler spread of 2.12KHz
and data rate of 512K bps. σ2

v is chosen to make the AR
process have a unit power, and the signal to noise ratio
(SNR) is calculated as 10 log(N/σ2

u). 50 particles are drawn
at every filter step. The resampling procedure occurs when
1
J

∑J
j=1(w

(j)
t /w̄t − 1)2 > 9, where w̄t is the mean of w

(j)
t .

Both code rates are 1/2, and both block size of code bits
are 512 while that of information bits are 256. The RSC code
is a length-5 convolution code with generators (23,35) in octal
notation, while the LDPC code is constructed according to the
Mackey-Neal rule [8] with column weight t = 3. The S-random
[9] interleaver (S = 11) is used for two codec schemes.

The performance of the proposed detector is evaluated with
the bit error rate (BER). Fig. 3 and 4 show the performance
of the RSC code and the LDPC code when the number of
transmit and receive antennas are (N,M) = (2, 2), (2, 3),
(3, 2), respectively. The maximum iteration times is 5 for RSC
codes and 15 for LDPC codes. Obviously, the BER decreases
when the SNR increases. Moreover, the performance of the
TURBO-BLAST decoder [10], requiring the accurate channel
state information (CSI), is also shown in Fig. 3 and 4. From
simulations, we observe that the performance of the proposed
algorithm is close to that in Ref. [10] when the number of
transmit and receive antennas are the same. In additon, Fig. 3
and 4 show that the performance of the RSC code is better
than that of the LDPC one. However, the computation burden
of LDPC code is much less than that of the RSC one.

Furthermore, the proposed detector can achieve good perfor-
mance even with fewer receive antennas than transmit ones.
Clearly, the major limitation of the conventional VBLAST
detector can be eliminated.

6. CONCLUSIONS

In this paper, a blind symbol detector based on the particle
filtering and the iterative decoding is proposed for the VBLAST
coded MIMO systems. By exploiting the particle filtering, we
can make the turbo receiver be a blind detector. Simulation
results show that not only its performance is close to the
nonblind algorithm, but also it can be applied with fewer
receive antennas than transmit ones.
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