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ABSTRACT

We propose a blind multiuser detector based on Monte Carlo

Markov chain (MCMC) techniques. The detector exploits mutu-

ally orthogonal complementary sequences to distinguish between

transmitting users and space-time codes to take advantage of the

available spatial diversity. We propose a partitioning scheme for

the symbol draws in the MCMC algorithm that reduces the com-

plexity without any degradation in performance. The detector’s

performance is simulated in an iterative receiver that utilizes an

outer coder. The simulations display some loss in coding gain be-

cause of the blind nature of the system; however, diversity gain is

preserved.

1. INTRODUCTION

A sequential Monte Carlo (SMC) framework has been developed

and a wide range of applications have been discussed in [1]. This

Bayesian technique is primarily utilized in target tracking algo-

rithms [2]; however, other applications also exist. Blind receivers

are one application of this technique in the telecommunications

field, and an adaptive scheme has been proposed in [3]. Here we

extend this SMC technique for efficient blind detection of multiple

users in multi-antenna scenarios.

Our approach utilizes mutually orthogonal (MO) sets rather

than pseudo-noise (PN) sequences. MO sets introduce minimal

bandwidth expansion since the chip-rate is equal to the bit-rate.

MO sets are also suitable for multi-user applications where un-

coupled parallel communication channels exist. A soft multi-user

detector was introduced and utilized in an iterative receiver in [4],

where the channel was assumed known at the receiver. In this work

the channel is unknown at the receiver, however a slow fading rate

is assumed.

The contribution in this work is in the partitioning of the sym-

bol space. Partitioning has been applied previously to visual and

acoustic tracking problems with particle filters [5,6]. Here, though,

we take advantage of the conditional independence of the received

signal vectors. Instead of drawing symbols from the entire sym-

bol space, we partition it, draw ”sub-symbols” from the subspaces

and then merge the results. This technique reduces the complex-

ity of the algorithm significantly without any performance loss or

additional error propagation. We display the performance of the

detector in an iterative receiver utilizing an outer channel code.

2. SYSTEM DESCRIPTION

A detailed discussion on the construction and properties of MO

complementary sets can be found in [7]. Use of these sets in multi-

user communications has been discussed in [4]. Let us elaborate

on the signaling at the transmitter in Fig. 1. The channel coded

symbols ck are differentially encoded into dk and then convolved

with the mutually orthogonal set Akm assigned to the kth user:

dk[n] = dk[n − 1]ck[n] (1)

skm[n] = dk[n] ∗ Akm[n], (2)

where (∗) denotes convolution. We stack skm[n]

sk[n] � [sk1[n] . . . skM [n]]T . (3)

We define the following quantities by stacking each user’s succes-

sive samples of the coded data vectors. The goal here is to obtain a

transmitter model that will account for all K users. Then, the sym-

bols in the vector sk are mapped to the space-time block code ma-

trix Sk[n]. Here a code matrix designed by Tarokh is chosen [8].

bk[n] ck[n] dk[n]
Ak1

Ak2

AkM

Ch.Code Diff. Code sk1[n]

sk2[n]

skM [n]

Space-Time
Code...

...

πk

Fig. 1. Transmitter Model

3. A BLIND MULTIUSER DETECTOR

To simplify notation we stack Sks, hks, cks and dks as fol-

lows: c[n] = [c1[n] . . . cK [n]]T , d[n] = [d1[n] . . . dK [n]]T ,

S[n] = [S1[n] . . .SK [n]], h[n] = [h1[n]T . . .hK [n]T ]T . Here,

hk[n] is a column vector containing the complex amplitudes of

each channel. Subscripts for the remainder of the paper will in-

dicate time epoch rather than user number or a sequence number

within a set.

dn1:n2 � [d[n1]
T ,d[n1 + 1]T , ...,d[n2]

T ]T , n2 > n1 (4)

III - 10330-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡



π
−1
1

π
−1
2

π
−1
K

λ2[c1[n]]

λ2[c2[n]]

λ2[cK [n]]

λ1[c1[n]]

λ1[c2[n]]

λ1[cK [n]]

Λ2[b1[n]]

Λ2[b2[n]]

Λ2[bK [n]]

π1

π2

πK

Channel Decoder

Channel Decoder

Channel Decoder

MCMC

Multi-

user

Detector

...
...

...

Fig. 2. Iterative Receiver Model

and similarly rn � r[n].
The received signal vector can be described as:

rn = Snhn + ηn, (5)

where ηn is receiver noise, which is additive white Gaussian noise

with zero mean and σ2 variance. In this paper we assume that the

noise power is known and in practice it can be easily estimated.

Our goal is to calculate the a posteriori distribution

p(cn|r0:n+L−1) of all users’ coded symbols c without knowledge

of the channel h.

4. THE SMC DETECTOR

The MO complementary codes disperse the symbol dn in the

transmitted signal throughout L consecutive time epochs, where

L is the length of the MO sequences. In other words, the symbols

dn−(L−1):n contribute to the received signal rn. Therefore,

p(rn|dn−L+1:n,hn) ∼ N (Snhn, σ2I). (6)

Similarly,

p(dn,hn|rn:n+L−1) ∝
p(rn:n+L−1|dn−(L−1):n+L−1,hn:n+L−1)
p(hn:n+L−1|dn−(L−1):n+L−1)p(dn−(L−1):n+L−1).

(7)

Let {d(i)
n , w

(i)
n },Ns

i=1 denote a random measure that charac-

terizes the a posteriori distribution p(dn|d0:n−1rn:n+L−1). Let

d
(i)
n , i = 1, . . . , Ns be a sample draw. Our goal is to obtain sam-

ples of the transmitted symbols {d(i)
n , w

(i)
n }, properly weighted

with respect to the distribution p(dn|d0:n−1, rn:n+L−1).

The weights are defined as:

w(i)
n ∝ p(d

(i)
0:n|r1:n+L−1)

q(d
(i)
0:n|r1:n+L−1)

. (8)

We choose a proposal density:

q(dn|d0:n−1, r1:n+L−1) � p(dn|d0:n−1, r1:n+L−1). (9)

As a result the weight update simplifies:

w(i)
n ∝ w

(i)
n−1p(rn+L−1|r1:n+L−2,d

(i)
0:n−1). (10)

We cannot compute the above probability directly. We need

to include dn:n+L−1 and then marginalize it out. Also notice that

consecutive received vectors are conditionally independent.

w
(i)
n ∝ w

(i)
n−1∑

symn:n+L−1

p(rn:n+L−1, (d
(i)
n:n+L−1 = symn:n+L−1)|d(i)

0:n−1)

p(cn = d
(i)
n−1 � symn),

(11)

where the symbol � denotes Schur (element-wise) vector product

and sym denotes the symbol drawn from the posterior distribu-

tion. So far we have not included the channel effect in the above

distribution.

p(rn:n+L−1, (d(i)
n:n+L−1 = symn:n+L−1)|d(i)

0:n−1) =
∫

p(rn:n+L−1, (d(i)
n:n+L−1 = symn:n+L−1)|d(i)

0:n−1, hn:n+L−1)

p(hn:n+L−1|d(i)
0:n−1, r1:n+L−2)dhn:n+L−1

(12)

The first distribution in the integrant is Gaussian. The second dis-

tribution describes the channel. The channel is a flat Rayleigh fad-

ing channel, and its distribution is that of a complex Gaussian ran-

dom process. Hence, the above integral is also a complex Gaussian

pdf.

p(rn:n+L−1, (d(i)
n:n+L−1 = symn:n+L−1)|d(i)

0:n−1) ∼ N(µ
(i)
n,j

, P
(i)
n,j

) (13)

µ
(i)
n,j =

⎡
⎢⎢⎢⎢⎣

S
(i)
n,j 0 . . . 0

0 S
(i)
n+1,j . . . 0

0 0
. . . 0

0 . . . 0 S
(i)
n+L−1,j

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

h
(i)
n

h
(i)
n+1

...
h
(i)
n+L−1

⎤
⎥⎥⎥⎦ (14)

The elements in the main diagonal are space-time code matri-

ces associated with the ith particle and jth symbol in the alphabet

AKL. For shorter notation:

µ
(i)
n,j = Ξ

(i)
n,jh

(i)
n:n+L−1. (15)

Each particle h
(i)
n:n+L−1 for the channel also has a covariance ma-

trix Σ
(i)
n−1,j associated with it. It is defined recursively in equation

(18). The covariance of the distribution in (13) is

P
(i)
n,j = σ2I + Ξ

(i)
n,jΣ

(i)
n−1,jΞ

(i)
n,j

H
. (16)

With µ
(i)
n,j and P

(i)
n,j known, the channel state can be updated with

a Kalman filter:

h
(i)
n:n+L−1 = h

(i)
n−1:n+L−2 + K(i)

n (rn:n+L−1 − µ
(i)
n,j) (17)

Σ
(i)
n,j = (I − K(i)

n )Ξ
(i)
n,jΣ

(i)
n−1,j , (18)

where the Kalman gain is:

K(i)
n = Σ

(i)
n−1,jΞ

(i)
n,j

H
(P

(i)
n,j)

−1
(19)

Let us summarize our Monte Carlo Markov Chain (MCMC)

blind detector:

• Initialization

• Compute µ
(i)
n:n+L−1,j ,P

(i)
n:n+L−1,j and β

(i)
n:n+L−1,j for

each possible symn:n+L−1 ∈ AKL

• Draw a sample sym
(i)
n:n+L−1 ∈ AKL from the distribution

below:

p(d(i)
n:n+L−1 = symn:n+L−1|d0:n−1, r1:n+L−1) ∝ β

(i)
n:n+L−1,j

(20)
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• Update and normalize the weights:

w(i)
n ∝ w

(i)
n−1β

(i)
n:n+L−1,j (21)

w(i)
n =

w
(i)
n

Ns∑
i=1

w
(i)
n

(22)

• Update the a posteriori mean and covariance of the channel:

h
(i)
n:n+L−1 and Σ

(i)
n,j using (17-19) for the particular drawn

symbol. Update the mean and covariance of the received

signal vector µ
(i)
n:n+L−1,j and P

(i)
n:n+L−1,j using (15-16)

• Compute the a posteriori probability for the drawn symbol

cn.

• Re-sample to increase particle efficiency.

5. TEMPORAL PARTITION PARTICLE FILTER (TPPF)

The algorithm described in the previous section requires the com-

putation of a weight update that involves 2ML long vectors. This

increases the complexity of the algorithm even further in equation

(16). 2KL matrices must be computed, each of which requires

multiplication of 2ML × LMK sized matrices. Moreover, in

equation (19) the inverse of a 2ML × 2ML sized matrix must

be calculated. The primary contribution of this work is in the sim-

plification of this process. We propose a partitioning scheme for

the symbol draws that reduces the complexity of the algorithm and

preserves the performance.

Our goal is to draw samples from the following distribution:

p(dn,hn|rn:n+L−1) ∝
p(rn:n+L−1|dn−(L−1):n+L−1,hn:n+L−1)
p(hn:n+L−1|dn−(L−1):n+L−1)p(dn−(L−1):n+L−1)

(23)

However, the received vectors are conditionally independent:

p(dn,hn|rn:n+L−1) ∝
L−1∏
l=0

[p(rn+l|dn−(L−1)+l:n+l,hn+l)

p(hn+l|dn−(L−1)+l:n+l)]p(dn−(L−1):n+L−1)

(24)

As a result of this partitioning, we get L distributions

β l
(i)
n,j(·), l = 0, . . . , L − 1 whose product is proportional to

the incremental weight update.

β 0
(i)
n,j(rn|hn) = |P(i)

n,j |−1 exp{−(rn − µ
(i)
n,j)

H

(P
(i)
n,j)

−1(rn − µ
(i)
n,j)}p(cn = d

(i)
n−1 � dn)

(25)

β 1
(i)
n,j(rn+1|hn+1,dn+1) = |P(i)

n+1,j |−1

exp{−(rn+1 − µ
(i)
n+1,j)

H(P
(i)
n+1,j)

−1(rn+1 − µ
(i)
n+1,j)}

p(cn = d
(i)
n−1 � dn)

(26)

β L − 1
(i)
n,j

(rn+L−1|hn+L−1, dn+1:n+L−1) = |P(i)
n+L−1,j

|−1

exp{−(rn − µ
(i)
n,j

)H (P(i)
n+L−1,j

)−1(rn − µ
(i)
n,j

)}
p(cn = d

(i)
n−1 � dn)

(27)

It seems that we are making the process more complex, but actu-

ally the computational complexity is relieved significantly because

the matrix P
(i)
n,j has to be evaluated NL

symb times less. The matrix

itself is L times smaller in each dimension, hence computation of

its inverse is also easier. Nsymb above is the cardinality of the

symbol constellation.

Let us summarize our TPPF blind detector:

• Initialization

• Compute

µ
(i)
n,j = S

(i)
n,jh

(i)
n (28)

P
(i)
n,j = σ2I + S

(i)
n,jΣ

(i)
n−1,jS

(i)
n,j

H
(29)

β 0
(i)
n,j , β 1

(i)
n,j , . . . , β L − 1

(i)
n,j (30)

for each possible symn:n+L−1 ∈ AKL

• Draw a sample sym
(i)
n+L−1 ∈ AK from the distribution:

p(d
(i)
n+L−1 = sym

(i)
n+L−1|d0:n−1, rn+L−1) ∝∫

p(rn+L−1|dn:n+L−1,hn+L−1)
p(hn+L−1|dn:n+L−1)p(dn:n+L−1)ddn:n+L−2 ∝
∫

β L − 1
(i)
n,jddn:n+L−2

(31)

• For p = L−2, L−3, . . . , 2 draw a sample sym
(i)
n+p ∈ AK

from the distribution:

p(d
(i)
n+p = sym

(i)
n+p|d0:n−1, rn+p:n+L−1, symn+p:n+L−1) ∝

∫ L−1∏

l=p
p(rn+l|dn:n+p−1,hn+p, symn+p:n+L−1)

p(hn+p|dn:n+p−1, symn+p:n+L−1)
p(dn:n+p−1)ddn:n+p−1 ∝
∫ L−1∏

l=p
β l

(i)
n,jddn:n+p−1

(32)

• Draw a sample sym(i)
n ∈ AK from the distribution:

p(d
(i)
n = sym

(i)
n |d0:n−1, rn:n+L−1, symn+L−1) ∝

L−1∏

l=0
p(rn+l|dn,hn+l, symn+1:n+L−1)

p(hn+l|dn, symn+1:n+L−1)p(dn) ∝
L−1∏

l=0

β l
(i)
n,j

(33)

• Update the weights:

w(i)
n ∝ w

(i)
n−1

L−1∏
l=0

β l
(i)
n,j (34)

• Normalize the weights such that
Ns∑
i=1

w
(i)
n = 1:

• Update the a posteriori mean and covariance of the

channel:h
(i)
n and Σ

(i)
n,j for the particular drawn symbol. Up-

date the mean and covariance of the received signal vector:

µ
(i)
n:n+L−1,jand P

(i)
n:n+L−1,j using equations (28-29).

h(i)
n = h

(i)
n−1 + K(i)

n (rn − µ
(i)
n,j) (35)

Σ
(i)
n,j = (I − K(i)

n )S
(i)
n,jΣ

(i)
n−1,j , (36)

where the Kalman gain is:

K(i)
n = Σ

(i)
n−1,jS

(i)
n,j

H
(P

(i)
n,j)

−1
(37)
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• Compute the a posteriori probability for the drawn symbols:

P (cn = symn) =

Ns∑
i=1

w(i)((dn � cn−1) == sym(i)
n )

(38)

• Re-sample to increase particle efficiency.

Notice that the latter algorithm uses sufficient statistics to es-

timate the current symbol. The space from which the symbols are

drawn, however, has L times fewer dimensions. If the symbol con-

stellation has cardinality Nsymb, the complexity is reduced from

exp(KL log(Nsymb)) to L exp(K log(Nsymb)) without any sac-

rifice in performance.

One may argue that any error in the “sub-symbol” draws

may propagate and lead to incorrect symbol estimate and, conse-

quently, incorrect channel estimate. Such is not the case, because

the received signal vectors are conditionally independent. Also

note that, p(rn:n+L−1|dn+L−1) = p(rn+L−1|dn+L−1). Simi-

lar expressions could be written for the rest of the “sub-symbols”.

Therefore, the probability of incorrectly drawing a “sub-symbol”

in the temporally partitioned case is the same as if we had consid-

ered the entire received signal vector and the entire symbol space.

Our temporal partitioning of the space does not affect the perfor-

mance of the algorithm other than reducing the computation sig-

nificantly.

6. SIMULATION RESULTS

For our simulations, the channel encoder uses a rate 1/2 convolu-

tional code with generators 23, 35 in octal form. The channel was

a flat, block static, slow (fmT = 1e − 3) Rayleigh fading chan-

nel. We utilized M = 4 transmit antennas per user. The mutually

orthogonal sequences were of length L = 4. We had 4 sequences

per mate set and K = 2 mate sets − one for each user. All inter-

ferers had equal transmit power. In our simulations we utilized a

space-time block code for 4 Tx antennas [8].

100 200 300 400 500 600 700 800 900 1000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

n

|h
n(i

) |

Fig. 3. Channel estimated by TPPF method. K = 2 users, 4 Tx

antennas per user, SNR=6dB. One user’s channel shown.

7. CONCLUSION

In this paper, we have utilized the properties of MO complemen-

tary sets to achieve near single user performance. The complexity

−2 −1 0 1 2 3 4 5 6 7

10
−4

10
−3

10
−2

10
−1

10
0

SNR

B
E

R

1−user full CSI at receiver

1−user blind TPPF method
2−users blind TPPF method

Fig. 4. Performance of TPPF compared to the case of full channel

state information (CSI) at receiver. K = 1, 2 equal power users, 4

Tx antennas per user.

is significantly reduced by implementing a smart partitioning of

the symbol space without any reduction in performance. Addi-

tionally, the diversity order of the system is preserved, as is seen

from the results.
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