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ABSTRACT

Spatial multiplexing of data streams on multiple transmit antennae
is a well known means of increasing the data-rate in a bandwidth
constrained system. At the receiver, maximum likelihood (ML)
detection offers the best performance. However, for large con-
stellations and/or large number of antennae the complexity of the
decoder grows exponentially. Sphere-decoding is one suboptimal
decoding method that has been proposed to reduce complexity by
reducing the size of the search space for determining the optimum
transmitted symbol vector. In this paper, we present an alternative
approach, using an absolute-value based distance for searching,
that keeps the size of the search space the same, but reduces the
complexity by reducing the number of multiplications required to
evaluate the quantities being compared in the search space. This
method has vastly reduced complexity compared to ML. Simula-
tion results will be presented with a bit-interleaved coded modula-
tion (BICM) system to show that this method has less than 0.5 dB
performance loss as compared to ML detection.

1. INTRODUCTION

In recent years there has been increasing interest in build-
ing multiple-antennae wireless systems capable of improv-
ing the channel capacity in a fixed bandwidth [1]. One of
the ways of doing so is spatial multiplexing, where multi-
ple coded data streams are transmitted simultaneously over
two or more antennae and received with the same or greater
number of antennae. The optimal receiver in this scenario
is a maximum-likelihood (ML) receiver that finds the soft-
metric for each bit in a transmitted symbol vector by search-
ing for the best log-likelihood ratio over all possible trans-
mitted symbol combinations. In practice, the log-likelihood
ratio is approximated by the minimum Euclidean distance
metric [2]. Since a MIMO system transmits a

� �
dimen-

sional symbol vector, where
� �

is the number of transmit
antennae, the complexity of this search, in terms of number
of multiplications required, grows exponentially. This com-
plexity is considered to be too high for a practical imple-
mentation. Hence, most implementations use simpler, but
suboptimal methods based on linear filtering, like minimum-
mean-squared-error (MMSE) or zero-forcing (ZF) receivers.

These receivers do not exploit the full available channel
diversity and therefore suffer in performance as compared
to a ML receiver. Hence there has been recent interest in
reduced-complexity methods that can approach the ML per-
formance [3]. Recently, sphere-decoding methods [3, 4, 5,
6] have been proposed that attempt to reduce the search
space by searching candidate vectors that lie within a certain
radius. There are several limitations to these methods, such
as varying degree of complexity depending on SNR and
choice of radius [5, 6]. The conclusion in [5] was that the
complexity of sphere-decoding for coded systems is still too
high, since a large number of candidates need to be searched
to provide good soft metrics for the decoder. In [7] another
reduced-search space method for uncoded systems is de-
scribed, along with a modified absolute-value metric that
has an error floor for low bit-error rates. Thus there is still
a need for reduced complexity MIMO decoding for coded
systems that do not suffer an appreciable performance loss.

In this paper we take a different approach, where the size
of the search space remains the same, but a metric based on
absolute-value instead of Euclidean distance is used to ini-
tially search for the “best” transmitted symbol vector. Once
this is found, the actual soft-metric used by the Viterbi de-
coder could be either based on the absolute-value search
metric, or the Euclidean distance metric. The latter method
has slightly better performance at lower SNR. Even though
the number of comparisons remains the same, the number of
multiplications used in the evaluation of each of these com-
pared values is reduced drastically, hence reducing the over-
all complexity. The performance of this proposed method
will be demonstrated via simulations to be very close to the
optimal ML method for a BICM system

The rest of the paper is organized as follows. Section 2
describes the signal model, channel assumptions and briefly
summarizes the ML, MMSE and ZF methods. Section 3 de-
scribes the absolute-value search algorithm and compares
the complexity with that of ML. Section 4 presents simu-
lation results comparing the performance of the proposed
methods with ML and weighted zero-forcing (WZF). Fi-
nally, conclusions are presented in Section 5.
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2. BACKGROUND

We assume, without loss of generality, a 2 x 2 spatially mul-
tiplexed system, using BICM. On each spatial stream, the
data bits are coded by a convolutional code, interleaved, and
then mapped into symbols which are chosen from a prede-
termined constellation � of size � � � � � � , where � is the
number of bits per symbol. Hence the received signal model
at time � can be written as:

� � � 	 � 
 � � � � (1)

where � � � 
 � � � � � � � � � �
is the received symbol vector, 	 �

is the 2 x 2 channel matrix composed of independent, com-
plex Gaussian coefficients,


 � � 
 
 � � � 
 � � � � �
is the sym-

bol vector transmitted simultaneously from both antennae
and � � � 
 � � � � � � � � � � is the additive noise, assumed to
be complex, Gaussian and independent on each received
stream with variance � �� . Each of the symbols


 � � �
and
 � � �

belongs to the constellation � and are normalized to
have unit variance. Thus the transmitted vector 
 � contains� � coded bits. We assume that the channel matrix 	 � is
known at the receiver for each � and that the channel could
be either fast-fading, i.e. 	 �

is independent for every � , or
quasi-static, i.e. 	 �

stays unchanged for the duration of the
packet. Henceforth, for simplicity, we will drop the time in-
dex � from the above equation and work with the following
signal and channel model:

� � 	 
 � � (2)

where � � 
 � � � � � � , 	 � 
 	 � � 	 � � � 	 � � 	 � � � , 
 �
 
 � 
 � � � and � � 
 � � � � � � .

2.1. ML decoding

Let 
 � and 
 � be two symbols from the constellation � .
Define � � � � � � 	 � � 
 � � 	 � � 
 � and � � � � � � 	 � � 
 � �	 � � 
 � . Define distance � � � 
 � � 
 � � as follows:

� � � 
 � � 
 � � � � � � � � � � � � � �
(3)

Since

 � and


 � are each drawn from the same constellation� , there are � � � �
possible values for � � � 
 � � 
 � � that have

to be searched for determining the soft-metrics for each of
the bits in


 � and

 � . This is done as follows. Let the �

bits that are mapped to the symbol

 � transmitted on the

first antenna be denoted as � � � � � � � � � �  � . Let us define
the subset of constellation points � !" as the set of symbols
from the defined constellation � such that � " � # where #
is either $ or % .The first step in computing the soft-metric
for � " is to find four symbols


 & � '� � " ,

 & � '� � " , 
 & � '� � " and


 & � '� � " as

follows: ( 
 & � '� � " 
 & � '� � " ) � * + , - . /0 1 2 3 4 56 78 9 : ; < = � � � 
 � � 
 � � (4)( 
 & � '� � " 
 & � '� � " ) � * + , - . /0 1 2 3 4 26 78 9 : ; < = � � � 
 � � 
 � � (5)

Then the soft-metric > � � " � can be defined as:

> � � " � � � � � 
 & � '� � " � 
 & � '� � " � � � � � 
 & � '� � " � 
 & � '� � " � (6)

The soft-metrics for each bit in the symbol

 � transmit-

ted on the second antenna are computed in the same way.
These soft metrics are then deinterleaved and used in a soft-
decision Viterbi decoder to decode the transmitted bits [2].
It is immediately obvious from equations (3)-(5) above that
the complexity of the ML search is proportional to � � � �

.
There are two factors of interest here, one is the size of
the search space, which is � � � �

, and the other is the ac-
tual computation of each of the values in this search space.It
should be noted here that unlike an uncoded system where
the search is for a single symbol vector for every bit in a
symbol, in a 2 x 2 coded system the search is for 2 symbol
vectors per bit, or ? � vectors per transmitted symbol vec-
tor, according to equations (4) and (5) above. Hence, it is
not possible to reduce the search space as in [7] without in-
curring a substantial loss in performance. This was the same
conclusion reached in [5] as well. Our approach, described
in Section 3 will be to keep the size of the search space
the same, while reducing the complexity of computation for
each of the values in the space.

2.2. Linear Receivers: MMSE and ZF

The ML detector described above does not explicitly sep-
arate the data on each spatial stream before computing the
soft-metrics for each bit in the transmitted symbol vector.
The more commonly used, lower-complexity approach, is
to use a linear receiver first to separate the data and then
proceed to evaluate the soft-metrics independently on each
stream. Let @ be a linear transformation of the received vec-
tor � and A
 be the estimate of the transmitted symbol vector

. Then:

A
 � @ � (7)

MMSE Receiver: @ � 	 B � 	 	 B � � �� C �  �
(8)

ZF Receiver: @ � � 	 B 	 �  � 	 B (9)

The soft-metrics can now be computed independently on
each of the symbols A
 � and A
 � on the 2 antennae. A modifi-
cation of the above [8] is to weigh the soft-metrics on each
antenna by the variance of the noise on each antenna after
filtering with @ . This gives the so-called weighted MMSE
and ZF solutions (WMMSE, WZF).
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Search Method No. of operations/symbol vector
Complex multiplications Complex additions Real additions

Euclidean distance � �� � � � � � � � � � � � � �� � � � � � � � � 	
Absolute value � �� � � � � �� � � � � � 
 � � � 	

Table 1. Complexity comparison for � � x � � system.

3. ABSOLUTE-VALUE SEARCH METRIC

Let us define a metric � � as follows:

� � 
 � � � � � � � � Re 
 � � � � � � Im 
 � � � � � � Re 
 � � � � � � Im 
 � � � �
(10)

where � � , � � , � � and � � are as defined previously. Com-
paring equations (3) and (10) we see that we have essentially
used the following approximation for any complex number�

, that holds for high SNR:

� � � � � 
 � Re 
 �
� � � � Im 
 �

� � � � (11)

There are two possible ways of using the metric � � defined
above.

1. Method 1: Metric � � is used instead of � � in both
searching and computing the soft metrics, i.e. in equa-
tions (4) to (6).

2. Method 2: Metric � � is used for searching, but then
the Euclidean distance � � is used for computing the
soft-metrics, i.e � � is used in equations (4) and (5)
but � � is used in equation (6), using the arguments
from the search in (4) and (5).

The benefit of Method 2 above is that the performance at
low to moderate SNRs is improved, since we are using the
approximation of the Euclidean distance only in the search
but the actual metric used by the Viterbi decoder is still the
Euclidean distance metric.

3.1. Complexity comparison

Table 1 shows the complexity of the two search methods in
terms of number of complex multiplications, complex ad-
ditions and real additions required to compute the metric
values in the search space. These values are for a � � x � �
system with a constellation size � � � on each antenna. For
the Euclidean-distance search, we first need � �� � � � com-
plex multiplications to compute all possible entries of � �
and then � � � � � � � complex multiplications to compute the
Euclidean distance between the received vector and each
possible transmitted symbol vector. For the absolute value
search, we just need � �� � � � complexmultiplications to com-
pute all possible entries of � � , and all further computations

involve only additions. Method 2 would require an addi-
tional � � complex multiplications. The number of com-
plex and real additions required for both searches is about
the same. Hence we see that the complexity of the Eu-
clidean distance search is primarily due to the number of
complex multiplications required. With the absolute-value
search (Method 1 or 2), the number of complex multiplica-
tions required is linear with respect to the constellation size� � � . In most practical implementations of MIMO consid-
ered thus far, � � is small, say 2 or 3, while � � � could be
large. In such cases the reduction in complexity is substan-
tial. For example, a 2 x 2, 64 QAM system would need 8448
complex multiplications for the Euclidean distance search
and only 256 complex multiplications for the absolute-value
search, which is a 97% reduction in complexity.

The reduction in complexity is even more when one
considers a quasi-static fading channel where the matrix �
stays the same for � � symbols. This is the case in many
practical systems like 802.11a where it is assumed that the
channel does not change over one packet. The absolute-
value search still requires only � �� � � � complex multiplica-
tions for all � � symbols, but the Euclidean distance search
requires � � � � � � � � � � � �� � � � complex multiplications.
For comparison, the MMSE/ZF receivers require � �� � �
multiplications for � � symbols. Hence, as the packet size
increases, the number of multiplications required for the
absolute-value search method approaches that of MMSE/ZF
and when � � � � � � , the number of multiplications required
for the entire packet becomes less. The only difference is
in the complexity of the comparator that is required: for
absolute-value search it is � � � � � whereas for the MMSE/ZF
receiver it is � � � � � . Usually the complexity of the com-
parator is less compared to multipliers, and hence for large
packets the absolute-value search method approaches the
low complexity of MMSE/ZF with a performance close to
that of ML, as will be shown in the next section.

4. SIMULATION STUDY

In this section we present simulation results comparing the
ML decoder with the absolute-value decoder for a BICM
system using the constraint length 7, rate 1/2 convolutional
coder with generators [133,171]. This is the same code used
in the 802.11a standard [9]. We consider a 2 x 2 system with
16QAM constellation on each antenna. Data is transmitted
in packets of 500 bytes each. The channel is assumed to
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be fast-fading, i.e. a different channel matrix is generated
for each transmitted symbol vector. Figure 1 shows the bit
error rate (BER) and Figure 2 shows the packet-error rate
(PER) performance of the ML decoder, the absolute-value
decoder using Method 1, and the absolute-value search with
Method 2. We see that the performance difference between
ML and absolute-value with Method 1 is about 0.5 dB. The
absolute-value search with Method 1 is about 0.2 dB worse
than with Method 2. For comparison, the WZF receiver is
also shown. This receiver has a performance loss of about 2
dB compared to the ML decoder.

In this example, the search space is 256 values, which
is not considered too large for a practical implementation
of a comparator. The absolute-value search requires only
64 complex multiplications per symbol vector, whereas the
ML search requires 1088 complex multiplications. Hence
there is a 94% reduction in complexity, and only a 0.5 dB
loss in performance.
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Fig. 1. BER performance of ML, Method 1, Method 2 and
WZF.

5. CONCLUSIONS

In this paper we have used an absolute-value search to re-
duce the computational complexity of ML decoding for a
MIMO system. The number of multiplications required be-
comes linear in � � � instead of exponential and hence this
method is very useful in cases where � � � is large. Simula-
tion results have been presented to show that the reduction
in complexity does not affect the performance appreciably,
showing less than 0.5 dB loss for a BICM, 2 x 2 system
with 16QAM on each antenna. Future extensions of this
work will look at applying sphere-decoding techniques to
the absolute-value metric to further reduce the complexity
by reducing the size of the search space as well.
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Fig. 2. PER performance of ML, Method 1, Method 2 and
WZF.
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