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ABSTRACT

Maximum likelihood (ML) detection of symbols transmitted over
a MIMO channel is generally a difficult problem due to its NP-
hard nature. However, not every instance of the detection problem
is equally hard. Thus, the average complexity of an ML detector
may be significantly smaller than its worst-case counterpart. This
is typically true in the high SNR regime where the received signals
are closer to the noise free transmitted signals. Herein, a method
which may be used to lower the average complexity of any ML de-
tector is proposed. The method is based on the ability to verify if a
symbol estimate is ML, using an optimality condition provided by
the near-ML semidefinite relaxation technique. The average com-
plexity reduction advantage of the proposed method is confirmed
by numerical results.

1. INTRODUCTION

Maximum Likelihood (ML) detection in multiple-input multiple-
output (MIMO) channels is a problem that requires joint detection
of multiple symbols at the receiver. For a general channel where
no special exploitable structure exists, the ML detection problem
has been shown to be NP-hard [1, 2]. This implies that there is no
known algorithm which solves an arbitrary instance of the prob-
lem in polynomial time. However, in digital communications the
instances of the ML detection problem are generated according to
some stochastic model due to the random behavior of the com-
munication channel and it is therefore possible to have a scenario
where most instances are relatively easy to solve. An algorithm
which is able to exploit this property may have a low average com-
plexity or efficiently solve the detection problem with a high prob-
ability.

The above mentioned complexity behavior has been widely
recognized in the now popular sphere decoding algorithm [3, 4]
which can be used to solve the ML detection problem. Although
sphere decoding yields an exponential expected complexity [5]
with respect to the problem size, it enjoys fairly low average com-
plexity in the high SNR regime and for problems of moderate size
[4]. This is because the sphere decoding complexity is dependent
on the distance between the received message and the noise free
transmitted message. As the SNR is increased, i.e. the noise vari-
ance decreased, this distance becomes smaller on average thereby
leading to a decrease in the average complexity.

A natural question is whether such simplifying properties of
the detection problem can be exploited in other implementation
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or approximations of the ML detector as well. Herein, an add-
on procedure which is applicable to any ML detection algorithm
is proposed. This method is based on the semidefinite relaxation
(SDR) approach previously proposed in [6, 7] and is applicable
when binary constellations such as BPSK or QPSK are used. The
optimization is based on the observation that in certain instances it
is possible to verify whether a particular estimate of the transmit-
ted message is the true ML estimate. The key idea is to first apply
a computationally efficient detector, such as the zero-forcing (ZF)
detector to estimate the transmitted message. Then, by the applica-
tion of the SDR framework it is tested if this estimate corresponds
to the true ML estimate. If this is the case, there is no need to
actually run the presumably more complex ML detector. Addi-
tionally, if this ML test is affirmative with high probability the ML
detection algorithm needs only to be applied to a small number of
problem instances, thereby reducing the average complexity.

The outline of this paper is as follows. In Section 2 the chan-
nel model and ML detector are presented. Then the principle of
semidefinite relaxation is treated in Section 3. The proposed ML
optimization is outlined in Section 4. The efficiency of the method,
i.e. the probability that the test is positive, is then addressed by nu-
merical simulations in Section 5.

2. ML DETECTION

Consider a discrete time linear MIMO channel modeled on matrix
form as

y = Hs + v. (1)

The vector y ∈ Rn is the received signal, the matrix H ∈ Rn×m is
the channel matrix, and the vector v ∈ Rn is additive white Gaus-
sian noise. The transmitted symbols, s, are drawn from a BPSK
constellation, i.e. s ∈ Bm where B � {±1}. It will also herein
be assumed that n ≥ m. Also, s will denote the vector of sym-
bols actually transmitted across the channel. Estimates of s will
be denoted by ŝ and arbitrary vectors in Bm such as optimzation
variables will be denoted by s̄.

The channel model is written in real valued form simply be-
cause this is convenient in the SDR framework. It is however well
known that the complex valued model with a QPSK constellation
may be written in the form of (1) by rewriting the original model
as [�(y)

�(y)

]
=

[�(H) −�(H)
�(H) �(H)

] [�(s)
�(s)

]
+

[�(v)
�(v)

]
(2)

where � and � denote the real and imaginary parts respectively.
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Under the white Gaussian noise assumption the ML detector
of s, ŝML, is given by

ŝML � argmin
s̄∈Bm

‖y − Hs̄‖2, (3)

i.e. among all hypothesized messages, Hs̄, the one which yields
the smallest distance to y is chosen. Problem (3) is however NP-
hard [1, 2] and solving (3) by exhaustive search has a complexity
which grows as 2m. This makes computationally less complex
solutions of (3) interesting.

3. SEMIDEFINITE RELAXATION

The ML detector in (3) can be equivalently written as

ŝML = argmin
s̄∈Bm

s̄THTHs̄ − 2yTHs̄.

By noting that xTLx = Tr
(
LxxT

)
and letting x = [s̄T 1]T, it

can be shown [7] that the above problem is equivalent to

min
X, x

tr(LX)

s.t. diag(X) = e
X = xxT

(4)

where e is the vector of all ones,

L =

[
HTH −HTy
−yTH 0

]
and x =

[
s̄
1

]
.

Note that the constraint Diag(xxT) = e ensures that s̄ ∈ Bm.
Also, [x]m+1 = 1 where [x]i is ith component of x does not need
to be maintained explicitly since if x is a solution to (4) then so is
it’s negative value, −x.

Problem (4) is equivalent to (3) in the sense that the solution of
one is easily obtained from the solution of the other. This implies
that (4) is also NP-hard. However, if the constraint X = xxT is
replaced by X � 0 where X � 0 means that X is symmetric and
positive semidefinite (PSD), problem (4) becomes

min
X

tr(LX)

s.t. diag(X) = e
X � 0

(5)

which is a convex optimization problem that can be solved effi-
ciently in O(m3.5) time [8]. Since X = xxT implies that X � 0,
problem (5) represents a relaxation of (4) and the optimal objec-
tive value of (5) gives a lower bound on that of (4). Techniques
where the solution to (5) is used to approximate the solution of (4)
have previously been used in the communications literature to ob-
tain estimators, ŝ, which have near ML performance [6, 7]. Here,
our interest is not in numerical optimization of (5), which has been
considered elsewhere [8, 6]. We are interested in some properties
of (5) that will prove useful in complexity reduction for a generic
ML detector.

4. ML VERIFICATION

Note that if for some reason the solution of (5), X, were to be of
rank one then it could be factored as X = xxT and would also
solve (4) and (3). In [9], the necessary and sufficient condition for
(5) to have a rank one solution corresponding to s̄ was obtained.
This result, proven in [9], is given by Theorem 1 below.

Theorem 1 Let s̄ be any vector in Bm. Also let v̄ � y −Hs̄ and
define a set

Vs̄ � {v̄ | HTH + Diag(s̄)−1Diag(HTv̄) � 0}.
Then, v̄ ∈ Vs̄ if and only if

X = xxT, x = [s̄T1]T

is a solution to (5).

The following corollary is a direct consequence of the theorem
since any rank one solution of (5) is also a solution of (4).

Corollary 2 Let ŝ ∈ Bm be any estimate of s. Let v̂ and Vŝ be
given as in Theorem 1. Then

v̂ ∈ Vŝ ⇒ ŝ = ŝML.

Note the implication in the corollary is only in one direction.
It is possible that sML = ŝ while v̂ /∈ Vŝ. This is a consequence of
that the SDR is not guaranteed to always yield rank one solutions.

However, what is stated by Corollary 2 is that if an estimate,
ŝ, is obtained by some estimation procedure and it turns out that
v̂ ∈ Vŝ then it is known that ŝ is the same estimate as would have
been obtained by the ML detector. This observation allows for
the following potential average complexity reduction of any ML
detector.

1. Obtain an estimate ŝ by some computationally efficient de-
tection method, e.g. by the zero-forcing detector as

ŝ = σ(H†y) (6)

where σ(·) is the sign function and † is the Moore-Penrose
pseudo inverse [10].

2. Compute v̂ = y − Hŝ and test

Q � HTH + Diag(ŝ)−1Diag(HTv̂) � 0. (7)

If positive, declare ŝML = ŝ. Otherwise, solve or approxi-
mate (3) by some method of choice.

Note that the test in (7) can be done by applying Cholesky
factorization, the operational cost of which is 1

3
m3. Now, assume

that (7) is true with high probability and the algorithm chosen to
solve (3) has a computational complexity which is higher than that
required for testing (7). Then the above strategy will lower the
average computational complexity of obtaining ŝML since the ML
detector will only need to be used for a fraction of the problem
instances. That there are scenarios for which (7) is indeed true with
high probability is shown by the numerical examples in Section 5.

There are also analytical arguments that indicate scenarios un-
der which the above scheme may prove useful. Note that the prob-
ability of (7) being true tends to one with increasing SNR for any
given full rank channel matrix, H. This follows since 0 is in the
interior of Vs and the norm of v = y − Hs is small with high
probability in the high SNR range. It can also be shown that (7) is
always true if the channel matrix, H, has orthogonal columns, see
[9]. It is therefore reasonable to assume that the proposed method
will work well when the SNR is high and the channel matrix is
relatively well conditioned. This is in line with the intuition that
the ML detection problem is not as difficult for such instances.
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4.1. Partial Factorizations

Even in the case where (7) is not satisfied, some additional in-
formation about the estimate, ŝ, may still be obtained by a par-
tial Cholesky factorization of Q. The partial Cholesky factor of
Q is a side product of attempting to find the complete Cholesky
factor [11], and hence obtaining the partial Cholesky factor does
not incur complexity increase of the proposed method. Informa-
tion obtained from the partial Cholesky factorization may however
be useful in a scheme where symbols are detected sequentially,
such as decision feedback detectors, block detectors and sphere
decoders.

Assume that Q � 0 which causes the Cholesky factorization
algorithm1 to terminate early after having processed row and col-
umn k of Q. Then, partition Q as

Q �
[
Q11 Q12

Q21 Q22

]

where Q11 ∈ Rk×k has been confirmed by the algorithm to be
PSD, i.e. Q11 � 0. Also, k is the largest integer such that Q11 �
0 holds true. Now, let

H �
[
H1 H2

]
where H1 contains the first k columns of H. Similarly let ŝ =
[ŝT

1 ŝT
2 ]T. Then, Q11 can be written as

Q11 = HT
1 H1 + Diag(ŝ1)

−1Diag(HT
1 v̂).

Since Q11 � 0 by assumption and

v̂ = y − H1ŝ1 − H2ŝ2 = ȳ − H1ŝ1

where
ȳ � y − H2ŝ2,

it follows that
ŝ1 = argmin

s̄1∈Bk

‖ȳ − H1s̄1‖2.

That is, even though ŝ = [ŝT
1 ŝT

2 ]T does not equal the ML estimate
of s it is known that ŝ is the conditional ML estimate given that the
last m − k components of s are equal to ŝ2.

Therefore, if the estimate ŝ is to be further improved to yield a
lower objective value in (3) the part given by ŝ2 must be changed.
This could potentially be useful in, for instance, a sphere decoder
algorithm [3]: if ŝ were any vector found in the search sphere, it
is known that the algorithm could safely retrace to symbol [ŝ]k+1

before continuing the search for the ML estimate. Additionally, as
previously outlined, if k = m the sphere decoder algorithm could
be terminated and ŝ = ŝML declared.

5. SIMULATIONS

The performance of the proposed method is clearly dependent on
the probability that Q � 0. The probability directly establishes
the fraction of problem instances for which the ML detector needs
to be applied. It will typically depend on the particular estimate,
ŝ, used in (7) as well as the statistics of the noise, v, and the chan-
nel matrix, H. While an analytical evaluation of this probability
seems intractable it may be evaluated numerically by Monte Carlo
simulations which is done in this section.

1It is herein assumed that this algorithm is implemented as in [11].
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Fig. 1. Performance of the ML verification procedure. In scenario
1 (N, M) = (8, 6) and in scenario 2 (N, M) = (12, 6). The
scenario number is indicated by the subscript.
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Instances of the ML detection problem were generated accord-
ing to the i.i.d. Rayleigh fading multiple antenna model, i.e. the en-
tries of H ∈ CN×M were generated independently according to
a complex Gaussian distribution. The signal to noise ratio (SNR)
was defined as

SNR � E{‖Hs‖2}
E{‖vH‖2}

where vH is the projection of the noise, v, onto the range of H,
i.e. the part of the noise relevant to the detection.

To be able to study the dependence on the conditioning of the
channel matrix, we consider the following two channel scenarios:
(N, M) = (8, 6), and (N, M) = (12, 6). On average the channel
matrix of the second scenario is better conditioned. In both cases,
according to (2), the number of BSPK symbols detected, m, is 12.
Throughout the numerical study we use a sphere decoder to obtain
the ML estimates which are used for the performance comparisons.

In Fig. 1(a) the probability of Q being positive semidefinite is
shown as a function of the SNR. The initial estimate, ŝ, in (7) was
chosen as the ZF estimate given by (6). As expected, the probabil-
ity of Q � 0 increases with the SNR. As a reference, in Fig. 1(a)
we include the probability of Q � 0 when the initial estimate in
(7) is the true ML estimate. This optimal initialization is useless
in practice, but from a performance study viewpoint it gives us an
upper bound on the possible performance of the proposed method
which could be attained by choosing ŝ appropriately. By the close-
ness of the curves in Fig. 1(a) it can be seen that not much will be
gained in these scenarios by considering more advanced estimators
than the ZF. Furthermore, the degradation of the proposed method
when the channel is poorly conditioned can be seen in the figure.

Fig. 1(b) shows the performance of the ML, SDR and ZF de-
tectors in the two scenarios. This figure is included mainly for ref-
erence and the performance of the detectors has been thoroughly
investigated elsewhere, see e.g. [7]. By comparing Fig. 1(b) and
1(a) it is seen that the probability of Corollary 2 being unable to
identify an ML solution is more significant than the probability
that the ZF estimate, ŝ, is not equal to the ML estimate. Thus, the
proposed method is limited by the effectiveness of (7) rather than
the accuracy of ŝ. Still, in the high SNR regime a large portion of
the estimates, ŝ, are positively identified as ML estimates.

Finally, the proposed method was used to lower the average
complexity of the original semidefinite relaxation detector. The
average number of floating point operations of the modified SDR
(MSDR) was compared to the original SDR as outlined in [6, 7].
In this algorithm problem (5) is solved by an interior point method.
In the MSDR this interior point algorithm is applied only in those
instances when the ML verification test fails. As above, the ZF
estimate was used as an initial estimate of s. In Fig. 1(c) it can
clearly be seen that in the regime were the ML verification is use-
ful with high probability, the average complexity of the MSDR
detector is significantly lower than that of the original SDR. Note
however that the BERs of the SDR and MSDR are identical due to
the way in which the MSDR was constructed.

6. CONCLUSION AND DISCUSSION

Herein, an add-on procedure which can be used to lower the aver-
age complexity of any ML detection algorithm was proposed and
evaluated. It was argued analytically and shown by numerical sim-
ulations that the proposed method is able to exploit the property
that many instances of the ML detection problem are easy in the
high SNR regime and when the channel matrix is well conditioned.

Reducing the average complexity of the ML detector may be
useful when several consecutive symbols are detected and when
the probability that the algorithm has a complexity which devi-
ates substantially from the average is small. Also, even in the case
when the ML detector is implemented under a strict time constraint
reducing the average complexity could be a way of reducing hard-
ware power consumption.

It is also worthwhile to mention that the proposed complexity
reduction method can be applied to some other related detection
problems, such as those in [12, 13].
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