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ABSTRACT
In this paper, we develop a new soft-in soft-out (SISO)

multiple-input multiple-output (MIMO) detection algorithm

using the Markov chain Monte Carlo (MCMC) simulation

techniques and study its performance when applied to a

MIMO communication system. Comparison with the best

MIMO detection algorithm in the current literature, the

sphere decoding, show that the proposed detection algo-

rithm can improve the gap between the present results and

the capacity by as much as 2 dB.

1. INTRODUCTION

Transmission through multiple transmit and receive anten-

nas, known as multiple-input multiple-output (MIMO) com-

munication, has been widely studied in recent years [1, 2, 3].

MIMO communication promises an increase in the chan-

nel capacity proportional to the minimum of the number

of transmit and receive antennas. Furthermore, because of

presence of alternative channel paths, MIMO channels are

very reliable and robust to fading effects. The challenge

in realizing the very high capacity of MIMO communica-

tion systems lies in development of effective detection al-

gorithms. Among many detection algorithms that have been

proposed in the past, the sphere decoding method of

Hochwald and ten Brink [4] is the one with the closest per-

formance to the channel capacity.

In this paper, we present a novel detection algorithm

based on the Markov chain Monte Carlo (MCMC) simu-

lation techniques [5], and through simulations show that it

outperforms the sphere decoding of [4] by as much as 2 dB.

2. CHANNEL MODEL

We consider a flat fading channel model whose input and

output are related according to the equation

y = Hd + n (1)
———————-
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where d is the vector of transmit symbols, n is the chan-

nel additive noise vector, y is the received signal vector,

and H is the channel gain matrix. The elements of H are

the channel gains between transmit and receive antennas.

Assuming that there are Nt transmit and Nr receive anten-

nas, d has a length of Nt, y and n have a length of Nr

and H is an Nr × Nt matrix. We assume that each ele-

ment of d is an L-ary symbol and takes values from the

the alphabet A = {α1, α2, · · · , αL}. We assume that n
is an iid Gaussian sequence with the autocorrelation matrix

E[nnH ] = σ2
nI, where I is the identity matrix. Through out

this paper, we assume that the channel gain matrix H and

the noise variance σ2
n are perfectly known to the receiver.

We note that the channel model (1) repeats for transmis-

sion of the successive values of d. Hence, there should be

a time index attached to all terms in (1). We avoid such a

time index here for brevity.

3. ITERATIVE MIMO DETECTION

We consider an iterative MIMO detector similar to the one

discussed in [4]. Fig. 1 presents the block diagram of such

a detector. It consists of a soft-in soft-out (SISO) MIMO

detector and a SISO channel decoder. The MIMO detector

generates a set of soft output sequences for the data symbols

d1, d2, · · · , dNt (the elements of d) based on the observed

input vector y and the a priori (soft) information from the

latest iteration of the channel decoder. After subtracting the

a priori information from the output of the MIMO detec-

tor, the remaining information which is new (extrinsic) to

the channel decoder is passed over for further processing.

Similarly, the soft input information to the channel decoder

is subtracted from its output to generate the new (extrinsic)

information before being fed back to the MIMO detector.

The soft information that is exchanged between the MIMO

detector and the channel decoder are the likelihood values

(L-values) of transmitted information bits or symbols. The

L-values are the ratios of the symbol probabilities as com-

monly defined in the literature [6]. We continue our discus-

sion with an evaluation of symbol probabilities and through

that demonstrate the challenge of estimating L-values in the
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MIMO detector.

Given y and the a priori information λe
2, where λe

2 de-

notes the set of all a priori (extrinsic) information (say, the

probabilities or L-values) that we have about d from the

channel decoder, we wish to calculate the conditional prob-

ability P (dk = αi|y, λe
2), for k = 1, 2, · · · , Nt and the L

possible choices of αi. To see the difficulty of this problem,

we note that

P (dk = αi|y, λe
2) =

∑
d−k

P (dk = αi,d−k|y, λe
2)

=
∑
d−k

P (dk = αi|y,d−k, λe
2)P (d−k|y, λe

2), (2)

where d−k = [d1 . . . dk−1 dk+1 · · · dNt ]T , the second

identity follows by applying the chain rule [7], and the sum-

mation is over all possible values of d−k. The number of

combinations that d−k takes grows exponentially with Nt

and thus may become prohibitive as Nt grows.

Fig. 1. Receiver structure. The MIMO detector and channel

decoder are SISO blocks that exchange soft information, λe
1

and λe
2, in a turbo loop.

4. SATISTICAL ESTIMATION OF PROBABILITIES

In a recent work [8], we have shown that the prohibitive

complexity of (2) can be avoided by adopting the Monte

Carlo statistical methods, where accurate estimate of the

summations is obtained by taking a small, but proper, sam-

ples of d−k. Gibbs samples that are obtained through a

MCMC simulator of the channel model (1) are used for this

purpose. The MCMC simulator begins with a random selec-

tion of d, choosing the elements of d randomly according to

their respective extrinsic information (probabilities). It then

proceeds with changing one of the elements of d at a time.

Say, dk is selected and it is given one of the possible values

from the alphabet A according to their respective probabil-

ities. In other words, dk is set equal to αi according to the

distribution P (dk = αi|y, λe
−k). More particularly, to ob-

tain the desired samples, the Gibbs sampler runs through the

following routine.

• Initialize d(−Nb)

• for n = −Nb + 1 to Ns

draw d
(n)
1 from P (d1|d(n−1)

2 , . . . , d
(n−1)
Nt

,y, λe
2)

draw d
(n)
2 from P (d2|d(n)

1 , d
(n−1)
3 , . . . , d

(n−1)
Nt

,y, λe
2)

...

draw d
(n)
Nt

from P (dNt |d(n)
1 , . . . , d

(n)
Nt−1,y, λe

2)

The Gibbs sampler is run for Nb + Ns iterations. From

this the first Nb iterations are used to allow Markov chain to

converge to its steady state so that proper samples of d could

be collected afterwards. During the next Ns iterations, i.e.,

for n = 1 to Ns, the Gibbs sampler generates Ns samples

of each symbol dk when d−k, y and λe
2 are given, for k =

1, 2, · · · , Nt. These samples are used to obtain an estimate

of P (dk = αi|y, λe
2) using the approximation

P (dk = αi|y, λe
2) ≈

1
Ns

Ns∑
n=1

P (dk = αi|y,d(n)
−k , λe

2) (3)

where d(n)
−k = [d(n)

1 · · · d
(n)
k−1 d

(n−1)
k+1 · · · d

(n−1)
Nt

]T and

d(n)
−k , in (3) and other equations that follow, is a shorthand

notation for d−k = d(n)
−k .

The approximation (3) is obtained through direct appli-

cation of Monte Carlo integration [5] to (2). In this paper,

we propose the following approximation:

P (dk = αi|y, λe
2) ≈∑Ns

n=1 P (dk = αi|y,d(n)
−k , λe

2)P (d(n)
−k |y, λe

2)∑Ns
n=1 P (d(n)

−k |y, λe
2)

. (4)

This approximation is obtained from the theory of impor-

tance sampling [5], and assuming that d(n)
−k are chosen from

a set of equally distributed but important samples of d−k.

Such important samples are obtained by running Gibbs sam-

pler and deleting repetitions of samples d−k. Computer

simulations presented in Section 6 show that (4) has much

better performance than (3) .

5. COMPUTATION OF EXTRINSIC L-VALUES

We assume that the alphabet size L is a power of 2. This

means each data symbol dk carries J = log2 L bits of coded

information, where J bis an integer. Let bj(dk) denote the

jth bit of dk, and U+
j (A) and U−

j (A) the subsets of the

alphabet A in which the jth bit of each element is +1 and

−1, respectively. Accordingly, the L-value of bj(dk) at the

MIMO detector output is obtained as

λ1(bj(dk)) = ln

∑
U+

j (A) P (dk = αi|y, λe
2)∑

U−
j (A) P (dk = αi|y, λe

2)
(5)

Substituting (4) in (5), we obtain (6), shown at the top of the

next page. Using the Bayes rule, we get

P (d(n)
−k |y, λe

2) =
p(d(n)

−k ,y|λe
2)

p(y|λe
2)

=
p(y|d(n)

−k , λe
2)P

e(d(n)
−k )

p(y|λe
2)

(7)
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λ1(bj(dk)) = ln

∑
U+

j (A)

∑Ns

n=1 P (dk = αi|y,d(n)
−k , λe

2)P (d(n)
−k |y, λe

2)
∑

U−
j (A)

∑Ns

n=1 P (dk = αi|y,d(n)
−k , λe

2)P (d(n)
−k |y, λe

2)
(6)

λ1(bj(dk)) = ln

∑
U+

j (A)

∑Ns
n=1 p(y|d(n)

k,i )P e(d(n)
−k )P e

−j(dk = αi)
∑

U−
j (A)

∑Ns
n=1 p(y|d(n)

k,i )P e(d(n)
−k )P e

−j(dk = αi)
· P e(bj(dk) = +1)
P e(bj(dk) = −1)

(10)

λe
1(bj(dk)) = ln

∑
U+

j (A)

∑Ns
n=1 p(y|d(n))P e(d(n)

−k )P e
−j(dk = αi)

∑
U−

j (A)

∑Ns
n=1 p(y|d(n))P e(d(n)

−k )P e
−j(dk = αi)

. (11)

where P e(d(n)
−k ) is a shorthand notation for P (d(n)

−k |λe
2), i.e.,

the probability of d−k = d(n)
−k given the available extrinsic

information. Similarly, we obtain

P (dk = αi|y,d(n)
−k , λe

2) =
p(y|d(n)

−k , dk = αi)P e(dk = αi)

p(y|d(n)
−k , λe

2)
.

(8)

Note that we use P (·) and p(·) to denote probability and

probability density functions, respectively. Morerover, be-

cause of the interleaving effect, the extrinsic bit information

from the channel decoder may be assumed to be indepen-

dent of each others. Hence,

P e(dk = αi) =
J∏

l=1

P e(bl(dk) = bl(αi)). (9)

Substituting (7), (8) and (9) in (6), we obtain (10) at the

top of this page, where d(n)
k,i = [d(n)

1 · · · d
(n)
k−1 αi d

(n−1)
k+1 · · ·

d
(n−1)
Nt

]T and P e
−j(dk = αi) =

∏L
l=1,l �=j P e(bl(dk) =

bl(αi)). Note that we have removed λe
2 from the first terms

under summations in (10), because when d is fully specified

the extrinsic information become irrelevant. On the other

hand, recalling that λ1(bj(dk)) = λe
1(bj(dk)) + λe

2(bj(dk))
and λe

2(bj(dk)) = ln P e(bj(dk)=+1)
P e(bj(dk)=−1) , we obtain, from (10),

(11), also shown at the top of this page.

When the channel gain matrix H is known and the noise

vector n is Gaussian and satisfies E[nnH ] = σ2
nI, p(y|d(n)

k,i )

= 1
(2πσ2

n)N/2 e−||y−Hd
(n)
k,i

||2/2σ2
n .

As in turbo decoders [6], to avoid numerical instabil-

ity, a log-domain implementation of (11) may be used. To

this end, we define η
(n)
k,i,j = ln

(
P e(d(n)

−k )P e
−j(dk = αi)

)
−

||y−Hd(n)||2
2σ2

n
and note that (11) can be rearranged as

λe
1(bj(dk)) = ln

∑

U+
j (A)

Ns∑
n=1

eη
(n)
k,i,j − ln

∑

U−
j (A)

Ns∑
n=1

eη
(n)
k,i,j

(12)

which can performed in a computationally efficient manner

by using the identity ln(ex + ey) = max(x, y) + ln(1 +
e|x−y|) and following the standard methods [6].

Alternatively, we can adopt a max-log-MAP type ap-

proach [6] and use the following approximation:

λe
1(bj(dk)) ≈ max

U+
j (A),n

η
(n)
k,i,j − max

U−
j (A),n

η
(n)
k,i,j . (13)

Since this approximation incur very little loss in performance,

but results in considerably less complex algorithm, the sim-

ulation results presented in the next section are based on

(13).

6. COMPUTER SIMULATIONS

We have studied the performance of both (3) and (4) through

computer simulations. The general conclusion that could be

derived from these simulations is that (4) outperforms (3)

by a significant gap. We have also compared the proposed

MCMC detection algorithm (implemented using (4)) with

the best available detection algorithms [4, 9] and found that

the proposed algorithm outperforms these methods. More-

over, the MCMC algorithm is directly applicable to the im-

portant case where Nt > Nr. The detection methods of [4]

and [9], on the other hand, are only appropriate in the case

where Nt ≤ Nr. Extensions of these method to the case

Nt > Nr although possible, is not recommended. This has

been clearly noted in [4] and the use of space-time codes of

[10] has been recommended. In this paper, because of the

limited space, we limit ourselves to two sets of simulation

results (i) a comparison of (3) and (4), and (ii) a comparison

of the proposed MIMO detector with the sphere decoding

of [4].

To compare the relative behavior of (3) and (4), we eval-

uated the extrinsic L-values of the information bits at the

output of the MIMO detector for Nt = 4 and Nr = 2.

Quadrature phase shift keying (QPSK) symbols are used.

The channel code is a rate 1/2 convolutional code with the

generator polynomials 1+D+D2 and 1+D2. Estimator (3)

is based on Gibbs samples from a single Markov chain with

Nb = 20 and Ns varied from 1 to 160. The estimator (4), on

the other hand, is based on a set of 3 Markov chains run in

parallel. Samples the three chains are used in (4). For each

case the exact L-values are calculated and compared with

the estimated values. The difference between the exact and
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approximate L-values are squared and ensemble averaged

over a large number of the channel realizations to obtain an

estimate of the mean square error (MSE) of the estimates.

The SNR at the receiver input is set equal to 8 dB. The mu-

tual information between the bit L-values and the transmit-

ted information is set equal to 0.2. The results, shown in

Fig. 2, clearly show the superior performance of the estima-

tor (4).

Fig. 3 compares the BER results of the MCMC detec-

tor with the sphere decoding of [4]. The results are for a

MIMO channel with Nt = 8 and Nr = 8 and constellation

sizes of QPSK, 16-QAM and 64-QAM. The channel code

is the turbo code used in [4]. As seen, the MCMC is able

to reduce the gap between the BER curves and the capacity

limit by about 2 dB for the cases of 16-QAM and 64-QAM.

For the case of QPSK, the MCMC detector performs similar

to the sphere decoding which in this case searches over all

possible values of symbols, i.e., it is an exact MAP detector

[4].

7. CONCLUSION

We presented a new MCMC detection algorithm which was

found to perform much superior to a recent work [8]. This

algorithm also was compared with the sphere decoding of

[4] and its superior performance was demonstrated through

simulations. We did not discuss the complexity issues, be-

cause of the limited space. However, at this point we wish

to comment that the MCMC detector that we proposed in

this paper has significantly lower complexity than sphere

decoding. Moreover, the ability to run parallel Gibbs sam-

plers make this method very appropriate for VLSI imple-

mentation where parallel processing can be very useful in

implementing system with very fast throughputs.
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