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ABSTRACT

A max-log-MAP detector based on the sphere decoder is proposed
and is shown to provide significant complexity reduction com-
pared to the brute-force method for an equivalent channel coded
BER performance. The algorithm is analysed for multiple antenna
systems where the performance is compared to a list sphere de-
coder with bounded complexity for practical implementation.

1. INTRODUCTION

In receiver design for wireless communication, there is a need to
develop efficient soft output detector algorithms for space time de-
tection and multi-user detection, where error correction coding is
utilized. Various near-optimal performance detectors have been
proposed such as those based on sphere decoding, namely list
sphere decoder (LSD) [1] and soft-to-hard sphere decoding [2].
The LSD involves searching for a list of possible transmitted sym-
bols to derive the soft output in terms of a posteriori log likelihood
ratio (LLR). The soft-to-hard sphere decoding proposed in [2] ap-
proximate the max-log-MAP (MLM) LLRs derivation based on
the knowledge of the maximum likelihood (ML) transmitted bits.
Sphere decoding is employed to obtain the maximum likelihood
estimate and a set of candidates to derive the MLM LLRs is pro-
vided by ’bit-flipping’ the found ML bit vector.

The LSD described in [1] suffers from the limitation that the
sphere search radius cannot be reduced during the decoder search
and the dependance of the soft output accuracy on the radius se-
lected. For non-antipodal signalling such as quadrature amplitude
modulation (QAM) scheme, the soft-to-hard sphere decoder re-
quires the transformation of the QAM symbols to a linear combi-
nation of binary vectors, the use of prewhitening filter and em-
ploying bit-level multistream coded transmission [2]. To avoid
the mentioned limitations, we follow the route of using multiple
sphere decoders to provide the MLM LLR soft output.

The following section will describe the MLM decoding prob-
lem in the context of multiple-input/multiple-output (MIMO) sys-
tem, followed by a brief introduction of sphere decoding tech-
nique. The concept of the proposed MLM sphere decoder is then
introduced before a conclusion based on our simulation results.

2. CONCEPT

Consider the space time transmission scheme with ñT transmitted
and ñR received signals, the 1× ñR received signal vector at each
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time instant is given by:

r̃ = s̃H̃ + ṽ, (1)

where s̃ = [ s̃1 . . . s̃nT ] denotes the transmitted vector whose
entries are chosen from a complex constellation C̃ with M̃ = 2q̃

possible signal points and q̃ is the number of bits per constella-
tion symbol. The AWGN noise vector ṽ is a 1 × ñR vector of
independent zero mean complex Gaussian noise entries with vari-
ance of σ2 per real component. The notation H̃ is the ñT ×
ñR MIMO channel matrix assumed to be known or estimated at
the receiver, with n-row and m-column component hn,m, n =
1, . . . , ñT , m = 1, . . . , ñR, representing the channel fading be-
tween the nth transmitted signal and mth received signal.

The complex matrix representation of Equation 1 can be trans-
formed into the real matrix representation with twice the dimen-
sions of the original system as follows:

r = sH + v, where

r = [ �(r̃) �(r̃) ],

s = [ �(s̃) �(s̃) ],

v = [ �(ṽ) �(ṽ) ],

H =

[ �(H̃) �(H̃)

−�(H̃) �(H̃)

]
. (2)

The following discussion uses the real-valued representation of
Equation 2. For a square symbol constellations, each real compo-
nent is chosen from the same real symbol constellation C with car-

dinality of M =
√

M̃ and q = q̃/2 number of bits per real sym-
bol. The notation nT = 2ñT , nR = 2ñR represents the number
of real signal component transmitted and received, respectively.

The maximum a posteriori (MAP) probability bit detection of
the jth bit of symbol sn, xn

j , conditioned on the received signal r
can be expressed in LLRs as follows:

Lp(x
n
j |r) = ln

P (xn
j = +1|r)

P (xn
j = −1|r)

= ln

∑
x∈X+

n,j
exp(− ‖r−ŝH‖2

2σ2 + 1
2
xT LA)

∑
x∈X−

n,j
exp(− ‖r−ŝH‖2

2σ2 + 1
2
xT LA)

n = 1, . . . , nT j = 1, . . . , q (3)

where x ∈ {−1, +1}nT is the sequence of possible transmitted
bits, LA is the vector of a priori LLR values of x, ŝ is the vec-
tor of possible transmitted symbols, i.e. ŝ = map(x), where the
function map(·) provides the mapping from bits to symbol. The
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set X+
n,j and X−

n,j are the set of 2qnT −1 bit vectors x having
xn

j = +1 and xn
j = −1, respectively, i.e. X+

n,j = {x|xn
j = +1}

and X−
n,j = {x|xn

j = −1}.
The a posteriori LLR for each bit xn

j defined in Eqn 3 can be
approximated using the max-log approximation as follows:

LP (xn
j |r) ≈ 1

2
max

x∈X+
n,j

{
−‖r − ŝH‖2

σ2
+ xT LA

}

−1

2
max

x∈X−
n,j

{
−‖r− ŝH‖2

σ2
+ xT LA

}
(4)

Here, only the pair of candidates that provides the maximum of the

term − ‖r−ŝH‖2

σ2 +xT LA from the sets X+
n,j and X−

n,j is required
to evaluate the MLM solution. The proposed MLM sphere de-
coder searches for this pair of candidates instead of evaluating for
all 2qnT candidates. The next section will briefly describe sphere
decoding before the full architecture of the MLM sphere decoder
is presented.

3. SPHERE DECODER

The sphere decoder was introduced in [3] and has been applied to
space time decoding in [4]. The principle of the algorithm is to
search for candidate ŝH within a sphere of radius λ centered at
the received signal r, i.e.

‖r − ŝH‖2 − σ2xT LA ≤ λ2. (5)

Each time a vector candidate ŝ is found, the search is restricted
further by reducing the radius such that the found candidate is on
the new search bound. There are three cases involved in the search
algorithm [5], assumming the elements of ŝ are searched in the
order of {ŝnT , . . . , ŝ1}:

• Case A: Each time the algorithm finds a point ŝn inside
the search bound during the nth level search, it expands its
search to the (n − 1)th symbol.

• Case B: A candidate ŝ is found if the search algorithm suc-
cessfully found all valid points ŝn, n = 1, . . . , nT inside
the search bound.

• Case C: However, if the examined point is outside the search
region, the algorithm moves up one step to examine the next
candidate for the (n + 1)th component of ŝ.

The search algorithm can be seen as a tree search as shown in
Figure 1 where every nth level node of the tree correspond to the
search for the nth symbol of ŝ. The search transverses down the
tree and the branch of the tree is ’cut off’ if the node gives an accu-
mulated distance metric larger than the sphere radius. The number
of nodes searched determines the complexity of the algorithm. For

n=nT
n=nT-1

n=2
n=1

�
�
�
�

��� ���

��� ��

M = 4

Fig. 1. Tree structure of the sphere decoder search algorithm.

more information, Agrell et. al. [5] provides an informative semi-
tutorial paper describing this search algorithm.

Our paper uses the closest point search technique based on
the Schnorr-Euchner strategy proposed in [5]. The search starts
from the Babai point or the zero-forcing (ZF) solution sZF =
(HT H)−1HT r and oscillates its search in turn from that point
without explicitly deriving the upper and lower bound of the search
region described in [6].

Reference [5] describes the search algorithm for the point ŝn

belonging to an infinite set of real integers. For the proposed MLM
sphere decoder, the set of points to be searched, ŝn, is restricted to
the finite symbol constellation with the jth bit xn

j constrained to
the value +(−)1, i.e. ŝn = map(xn) where

[
x1 . . . xnT

]
=

x ∈ X
+(−)
n,j , as shown in Equation 4.

The search algorithm described by Agrell [5], where only one
closest candidate is found, can be extended for ’list’ sphere decod-
ing [1]. LSD searches for a list of Ncand candidates ŝH nearest
to the received signal r to provide a good approximation of Equa-
tion 3. Hence the list L contains the ML estimate and Ncand − 1
neighbours. In [1], the sphere radius λ is kept constant and is
chosen according to the channel statistic. We propose keeping
the number of candidates in the list constant and reducing the
sphere radius to the maximum distance metric found in the list,
i.e, λ = max(d1, d2, . . . , dNcand) and di is the distance metrics
of the ith candidate in the list. The sphere radius is initially set to
a large value and is only reduced if the list is full. If a candidate
is found inside the search region, the candidate with the maximum
distance metrics in the list L is replaced by the new candidate and
the sphere radius is updated. The soft ouput is evaluated according
to Equation 4 but over the set x ∈ L ∩ X+

n,j and x ∈ L ∩ X−
n,j .

However, if there is no entry in the list with a prescribed bit value,
i.e., L ∩ X

+(−)
n,j = ∅, the LLR value corresponding to bit xn

j is
set to an extreme LLR value −xn

j,ML|L|max, where xn
j,ML is the

maximum likelihood estimate of bit xn
j .

4. ARCHITECTURE

The pair of candidates, required to evaluate the LLRs as described
in Equation 4, can be found from two stages of sphere decoding
shown in Figure 2. For every received signal r, the candidate with
the shorter distance metrics among the pair found from set X+

n,j

and X−
n,j for every bit in the sequence {xn

j }, n = 1, . . . , nT , j =

1, . . . , q, have the same minimum distance metrics d2
ML since one

of the pair is the ML space time symbol estimate, sML. The ML
space time symbol is found by the sphere decoder at the first stage
of the MLM sphere decoder architecture shown in Figure 2. There-
fore, having known the ML bit sequence {xn

j,ML} corresponding
to sML, the derivation of L(xn

j |r), only requires the search of a
candidate and its corresponding distance metrics d2

n,j,−ML from
the set X−ML

n,j where the bit is reversed to that of the ML solution,
i.e. xn

j = −xn
j,ML and sn

ML = map(xn
ML). This is performed by

the multiple sphere decoders at the second stage of the architecture
shown in Figure 2.

4.1. Bounding Search Radius

The speed of the sphere decoder depends on the initial search ra-
dius. Setting the initial search radius to the distance metrics corre-
spond to quantized sZF as described in [5] guarantees at least one
candidate in the search region. Various techniques have been pro-
posed to improve the search [7]. Here, we propose improving the
search of the second stage sphere decoding with the information of
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Fig. 2. Architecture of the MLM sphere decoder.

the lower distance metrics of the pair of candidate dML obtained
at the first sphere decoding stage.

The initial search region of the second stage sphere decod-
ing can be bounded according to the maximum LLR magnitude
|L|max required by the application. Rewriting Equation 4, the
MLM LLR is given by the pair of distance metrics dn,j,+ and
dn,j,− from the set X+

n,j and X−
n,j , respectively, as follows:

L =
1

2σ2
(−d2

n,j,+ + d2
n,j,−), giving (6)

|L| =
1

2σ2
(d2

n,j,−ML − d2
n,j,ML). (7)

Therefore, the initial sphere radius of the second stage sphere de-
coding can be set as follows:

λ2
n,j,initial = d2

n,j,−ML||L|=|L|max = 2σ2|L|max + d2
ML (8)

Note that the LLR magnitude |L| indicates the reliability of the
detection. Reference [8] demonstrates with a few channel decoders
that a good extrinsic output gain is provided for low and medium
a priori reliability but the output return diminishes for higher a
priori reliability. Therefore, when the reliability of the detection
or the a priori LLR magnitude is sufficiently high, there is little
improvement to the channel decoding performance and it is rea-
sonable to bound the LLR values provided to the channel decoder.
The maximum LLR magnitude |L|max required which does not
degrade the channel coded bit error rate (BER) performance will
depend on the channel code and decoder used.

Assumming that the multiple sphere decoding in Figure 2 are
performed sequentially, the candidates found during the previous
sphere decoding {ŝ1, ŝ2, . . . , ŝP }, together with their correspond-
ing distance metrics {d1, d2, . . . , dP } is used as the initial esti-
mate of dn,j,−ML at the current sphere decoding, i.e.

dn,j,−ML = dp if xn
j,p = −xn

j,ML (9)

where xn
j,p is the jth bit for the nth symbol of the pth candi-

date found. These initial estimate is used to set the initial radius
λ2

n,j,initial if it is lower than the bound set in Equation 8.

4.2. Bounded Complexity

The sphere decoder has variable complexity with the expected
complexity studied in [9]. For practical implementation, the com-
plexity of the sphere decoder has to be bounded where the node
search is limited. The LLR is calculated according to Equation 6,
based on the two distance metrics found after the limited tree node

search. However, stopping the search, especially during the first
stage where the ML symbol sML and distance metrics dML is es-
timated, will affect the accuracy of the derived LLRs passed to the
channel decoder. This will degrade the channel coded BER per-
formance as will be discussed in Section 5.

5. SIMULATION RESULTS

For the following simulations, a half-rate turbo coded, 4-by-4 (i.e.
ñT , ñR = 4) 16QAM system is considered. A half-rate convo-
lutional encoder with generator polynomial (5, 7)8 is used in the
turbo codec. The receiver is investigated over block invariant un-
correlated flat Rayleigh fading channel. We note that the MLM
performance curve in all the figures is simulated with our proposed
MLM sphere decoder with unbounded complexity. The notation
Eb/No in the figures signifies the average signal energy to noise
ratio per transmitted bit.

The effect of bounding the search radius as described in Sec-
tion 4.1 is demonstrated in Figure 3. The turbo-coded BER per-
formance shows little degradation from the MLM performance for
|L|max ≥ 4.
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Fig. 3. BER performance of MLM sphere decoder with varying
maximum LLR magnitude. The performance of the LSD with 5
candidates is shown for comparison.

Fig. 4. Probability density function of the number of node search
for MLM sphere decoder with varying maximum LLR magnitude,
LSD and the first stage MLM sphere decoder at Eb/No = 8dB.

The probability density function (PDF) of the number of node
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searches for the MLM sphere decoder with varying |L|max at Eb/No

= 8dB is shown in Figure 4. The mean and variance of the PDF
is given next to each curve. The PDF of node searches for the
first stage sphere decoder which finds the ML space time symbol
and for the LSD with five candidates are shown for comparison.
Figure 4 shows a significant complexity reduction in terms of the
number of node search by reducing the search radius for the sphere
decoder in the second stage based on limiting the maximum LLR
magnitude required. Note that the brute-force MLM space time
decoder for 4-by-4 16QAM system will require 2 × 4 × 164 =
524288 1. For example, the MLM sphere decoder with |L|max =
4 will require 675 times less node searches on average compared
to the full complexity MLM space time detector for an equivalent
BER performance.

Figure 5 compares the BER performance with bounded com-
plexity of n node search for list sphere decoder (LSDn) with five
candidates and MLM sphere decoder (MLMSDn) with |L|max =
4. Since, the complexity of the LSD increases with increasing
number of candidates required to evaluate the soft output, our sim-
ulation uses five candidates as a compromise between complex-
ity and BER performance, where the LSD provides approximately
2dB performance degradation from the MLM performance as de-
picted in Figure 3. The performance gain for the MLM sphere
decoder compare to the LSD is approximately 4dB, 6.5dB and
9dB for maximum node search of 1000, 500 and 200, respec-
tively, at BER=10−4. The performance gain is achieved by the
MLM sphere decoder despite requiring a higher total number of
unbounded node search compare to the LSD as shown in Figure 4.
This performance gain is due to the faster sphere radius reduction
for the first stage sphere decoder which searches for one candidate
compare to the LSD with Ncand candidates to be considered as
demostrated in Figure 4. Therefore, the probability that the ML
symbol sML is found is lower for the LSD compare to the MLM
sphere decoder for a limited number of search. The ML candidate
determines the polarity of the LLR values and thus significantly
affect performance of the channel decoder. The MLM sphere de-
coder with 1000 node search is approximately 1dB away from the
MLM performance. The full complexity MLM detector for 4-by-
4 16QAM system will require 524288 node searches. Therefore,
the MLM sphere decoder with a maximum of 1000 node searches
provide more than 500 times complexity reduction.

The BER performance of the minimum mean square error
(MMSE) space time detector is provided in Figure 5 as a bench-
mark. Due to the inaccurracy of estimated LLR values when the
complexity is bounded to 200 node search, the performance of
the LSD is inferior compare to the MMSE detector. In order to
speed up the search and to improve the bounded complexity per-
formance, the MMSE solution can be used as the initial candidate.

6. DISCUSSION AND CONCLUSION

The proposed MLM detector based on sphere decoding has been
analysed for MIMO system. The MLM sphere decoder provide
a factor of 675 complexity reduction on average compare to the
brute-force method for 4-by-4 16QAM system. For the same bounded
complexity, the simulations show the MLM sphere decoder pro-
vide better performance compare to the LSD. The complexity of
the sphere decoder can be further reduced by reordering the sym-

1Two real component per complex symbol, four complex symbol per
space time symbol and 164 possible candidates.

Fig. 5. BER performance comparison of MLM sphere decoder and
LSD with bounded complexity. The performance of the MMSE
space time decoder is shown as a benchmark.

bol detection as shown in [7, 10]. This will further improve the
performance of the bounded complexity MLM sphere decoder.
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