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Abstract— In this paper, we present a novel FFT-accelerated iterative
Linear MMSE chip equalizer in the MIMO CDMA downlink receiver.
The reversed form time-domain matrix multiplication in the Conjugate
Gradient iteration is accelerated by an equivalent frequency-domain
circular convolution with FFT-based “overlap-save” architecture. The
iteration rapidly refines a crude initial approximation to the actual final
equalizer taps. This avoids the Direct-Matrix-Inverse with O((NL)3)
complexity, and reduces the standard CG complexity from O((NL)2) to
O(NL log2(NL)). Simulation demonstrates strong numerical stability
and promising performance/complexity tradeoff, especially for very long
channels.

I. INTRODUCTION

UMTS and CDMA2000 extensions optimized for data services
lead to standards of High-Speed-Downlink-Packet-Access (HSDPA)
and its equivalent 1X EV-DO [1] to support multimedia wireless
services. On the other hand, MIMO (Multiple-Input-Multiple-Output)
technology has emerged as a significant breakthrough to significantly
increase the spectral efficiency. Recently, MIMO extensions for
3G and beyond wireless systems have received more and more
attention from the research community [1]. However, the original
inventions known as D-BLAST and a more realistic V-BLAST [2]
were proposed for narrow band and flat-fading channels. In a multi-
path channel, the conventional Rake receiver could not provide
satisfactory performance because of the short spreading gain. A
LMMSE (Linear-Minimum-Mean-Square-Error)-based chip equalizer
is proposed to restore the code orthogonality and suppress both
the Multiple-Access-Interference and Inter-Symbol-Interference [3]-
[5] in a CDMA downlink. However, the LMMSE equalizers involve
the inverse of a large correlation matrix with prohibitive O((NL)3)
complexity for real-time hardware implementation [3], where N is
the number of Rx antennas and L is the channel length.

Although the adaptive LMS algorithm avoids the Direct-Matrix-
Inverse (DMI), it suffers from stability problems because of its depen-
dency on good step size. A Conjugate Gradient algorithm proposed in
[4] could be considered as a fast algorithm with O((NL)2) complex-
ity. However, the eigenvalue spread of the covariance matrix and the
required filter length increase with the MIMO signal dimension. The
large eigenvalue spread slows down the convergence rate, especially
for the MIMO system. In order to capture the effects of mobile speed
in the fading channel, the equalizer filters must be updated several
times in one WCDMA slot. It is shown that this complexity still limits
the real-time implementation for compact handset hardware [5].

In this paper, we show that the CG iteration is essentially reduced
to performing matrix-vector multiplication for the correlation matrix
once per iterative step. Because the correlation matrix assumes a
block-Toeplitz structure, we apply a divide-and-conquer methodol-
ogy to accelerate the CG iteration. We first transform the direct
form block-Toeplitz structure of the correlation matrix in the CG

iteration to a reversed form block-Toeplitz structure. The new time-
domain matrix multiplication is accelerated by equivalent FFT-based
“overlap-save” computing architectures in the frequency domain.
Superfast [6] acceleration to O(NL log2(NL)) is then achieved. The
proposed iterative acceleration is compared with another FFT-based
solution using circulant approximation [5], where circular corners
need to be added to approximate the block Toeplitz structure with a
circulant structure. In high Signal-to-Noise-Ratio (SNR) range, this
increases the condition number and degrades the system stability
and performance. Unlike the FFT-based solution using the circulant
approximation, no approximation of the matrix structure is necessary
in the proposed algorithm. The acceleration does not degrade the
performance and demonstrates strong numerical stability for well
and mild conditioned systems and facilitates fixed-point parallel
implementation.

II. SYSTEM MODEL

The system model of the MIMO Multi-Code CDMA downlink
using M Tx antennas and N Rx antennas is described as follows.
First, the high data rate symbols are demultiplexed into KM lower
rate substreams, where K is the number of spreading codes used
for data transmission. The substreams are broken into M groups,
where each substream in the group is spread with a spreading code
of spreading gain G. The groups of substreams are then combined
and scrambled with scrambling codes and transmitted through the
mth Tx antenna. The chip level signal at the mth transmit antenna
is given by dm(i) =

�K
k=1 sk

m(g)ck
m(i) + sP

m(g)cP
m(i) where g, i

and k are the symbol, chip and code indices respectively. sk
m(g) is the

gth symbol of the kth code at the mth substream. In the following,
we focus on the gth symbol index and omit the index for simplicity.
ck

m(i) = ck(i)c
(m)
m (i) is the composite spreading code sequence for

the kth code at the mth substream where ck(i) is the user specific
spreading code and c

(m)
m (i) is the antenna specific scrambling long

code. sP
m(g) denotes the pilot symbols at the mth antenna. cP

m(i) =

cP (i)c
(m)
m (i) is the composite spreading code for pilot symbols at the

mth antenna. The received chip level signal at the nth Rx antenna
is given by

rn(i) =

M�

m=1

L�

l=0

hm,n(l)dm(i − τl) + z(i) (1)

where hm,n(l) constructs the channel matrix between the mth Tx
and the nth Rx antennas.

By collecting the LF = 2F + 1 consecutive chips with
center at the ith chip from each Rx antenna in rn(i) =
[rn(i + F ), · · · , rn(i), · · · , rn(i − F )]T and packing the sig-
nal vectors from all antennas, we form a vector as rA =
[r1(i)

T , · · · , rn(i)T , · · · , rN (i)T ]T . Here F is the observation
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window length at the receiver to support the different channel models.
The received signal is then given by,

rA(i) =

M�
m=1

Hmdm(i) + v(i) (2)

where v(i) is the additive Gaussian noise and dm(i) = [dm(i +
F ), · · · , dm(i), · · · , dm(i−F −L)]T is the transmitted chip vector
for the mth Tx antenna. Hm = [HT

m,1,H
T
m,2, · · · ,HT

m,N ]T is the
channel matrix with block Toeplitz structure.

III. SUPERFAST ITERATIVE CHIP EQUALIZER

A. Conjugate Gradient Chip Equalizer

A Linear MMSE based chip equalizer estimates the transmitted
chip samples filtered by a linear FIR filter as d̂m(i) = ŵH

mrA(i). The
LMMSE chip equalizer is given by ŵopt

m = arg minwm E[||dm −
ŵH

m(i)||2] = σ2
d(i)Rrr(i)

−1ĥm where Rrr(i) is the covariance
matrix and the channel coefficients are estimated as ĥm(i) =
E[rA(i)dH

m(i)] using the pilot symbols. The iterative Conjugate-
Gradient algorithm proposed for the MIMO receiver [4] involves two
steps in J iterations for the mth transmit antenna as:

1) Initialization

wm,0 = 0 (3)

γ0 = hm; ∆0 = hm (4)

δ0 = γH
0 γ0; δ1 = δ0 (5)

2) Iteration: for j = 1 : J

Γj = Rrr∆j−1 δj+1 = ΓH
j Γj (6)

α = δj/∆
H
j−1Γj ; β = δj+1/δj (7)

wm,j = wm,j−1 + α∆j−1 (8)

γj = γj−1 − α∆j−1 (9)

∆j = Γj + β∆j−1 (10)

The matrix-vector multiplication Γj = Rrr∆j−1 in the iter-
ation has the dominant complexity. Both the covariance matrix
and the channel estimation vector could be partitioned to sub
matrices and vectors according to the number of Rx antennas.
The N(L + 1) ∗ N(L + 1) covariance matrix is constructed as
Rrr =

�
Rn1,n2

�
where each of the submatrices Rn1,n2 is the

cross-covariance matrix between the Rx antennas n1 and n2. The
∆j−1 vector is a N(L + 1) vector and can also be partitioned
as ∆j−1 = [∆j−1,1, · · · ,∆j−1,N ]T . Thus, the matrix-vector mul-
tiplication in Γj = Rrr∆j−1 is partitioned into sub-blocks as

Γj =
��N

n=1 R1,n∆j−1,n, · · · ,
�N

n=1 RN,n∆j−1,n

�T

. A stan-
dard VLSI architecture for the Direct Matrix-vector Multiplication
(DMM) Γj,n1,n2 = Rn1,n2∆j−1,n2 is shown in Fig. 1.

B. Frequency-domain Computing Architecture

It is easy to show that the covariance matrix has banded
block Toeplitz structure with only N(L + 1) independent elements
En1,n2(l) for l ∈ [0, L] [5]. By defining the upper triangular corner
matrix as

CL
n1,n2 =

�
��

En1,n2(L) · · · En1,n2(1)
. . .

...
0 En1,n2(L)

	

� , (11)

we can expand the Rn1,n2 matrix to an Expanded-Form matrix with
concatenation as

Zn1,n2 =

� �
CL

n1,n2

01×L



Rn1,n2

�
01×L

(CL
n1,n2)

H


 

. (12)
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Fig. 1. A standard VLSI architecture for the DMM computation

It can be shown that this is a Toeplitz matrix of size (L+1)×(3L+1).
Thus the matrix computation by the correlation matrix is equal to

Γj,n1,n2 = Zn1,n2 ·
�
� 0L×1

∆j−1,n2

0L×1

	
� . (13)

1) Frequency domain FFT Acceleration: From the sliding win-
dow feature of the Zn1,n2 matrix, the matrix-vector multiplication
is actually a linear convolution, where the filter taps vector is
Yn1,n2 = [E∗

n1,n2(L), · · · , E∗
n1,n2(1), E(0), · · · , En1,n2(L)] and

the input data vector is Xn2 = [01×L, ∆T
j−1,n2 , 01×L]. This

linear convolution can be implemented using the time-domain linear
FIR filter where the general equation is given by Γj,n1,n2(l) =�2L

k=0 yn1,n2(k)∆j−1,n2(L − l + k) for {∆j−1,n2(l) = 0, l <
0 and l > L}. On the other hand, from the FIR filtering interpretation
and the features of the FFT algorithm, we can implement the linear
convolution from the circular convolution by using the FFT in the
frequency-domain. To convert the circular convolution to the linear
convolution, we need to take care of the edges to avoid frequency
alias. It is known that there are two equivalent architectures for
the FFT-based filtering of a long sequence, i.e., the “overlap-add”
and “overlap-save” architectures [7]. Because of the simplicity in
the control logic design, the “overlap-save” based architecture is
applied in the derivation. The details are omitted here due to the
limited space. It can be shown that the complexity is dominated
by two FFTs and one IFFT of length (3L + 1), which is given by
3(3L + 1) log2(3L + 1)/2 + (3L + 1) complex multiplications. In
this way, we have reduced the complexity from O

�
(L + 1)2

�
.

2) Reversed-Form FFT Acceleration Architecture: To
further reduce the complexity, the matrix multiplication in
Γj,n1,n2 = Rn1,n2∆j−1,n2 is transformed to the following
reversed-format matrix-vector multiplication, where the elements
of ∆j−1,n2 form the Topelitz matrix and the independent
elements of the correlation matrix form the multiplying vector
Yn1,n2 =

�
E∗

n1,n2(L), · · · , En1,n2(0), · · · , En1,n2(L))T . Thus,
Γj,n1,n2 equals to

�
����

∆j−1,n2(L) · · · ∆j−1,n2(0) 0
0
...

. . .
. . .

0 ∆j−1,n2(L) · · · ∆j−1,n2(0)

	



�∗En1,n2
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Fig. 2. “Overlap-save” FFT-based architecture for the Matrix-vector Multi-
plication in CG iteration.

which can be viewed as data sequence Yn1,n2 filtered by
the tap coefficients ∆j−1,n2 . With the “overlap-save” FFT-based
FIR filtering architecture, the filter ∆j−1,n2 is first padded
with zeros to make a vector of length (2L + 1). The vector
[E∗

n1,n2(L), · · · , E∗
n1,n2(1)] is considered as the L “overlap-save”

values from the first block. They are concatenated with the (L +
1) new values

�
En1,n2(0), En1,n2(1), · · · , En1,n2(L)

�
to make a

vector of length (2L+1). This vector is input to the FFT module of
length (2L + 1). The FFT results are multiplied with the FFT result
of the filter taps. An IFFT module computes the interim results and
the first L samples are dropped to generate the final result as in
Γj,n1,n2(l) = λn1,n2(l + L) l ∈ [0, L] .

This procedure is shown in Fig. 2. The number of complex
multiplications is given by (6L + 3) log2(3L + 1)/2 + (3L + 1).
After extracting the commonality, the optimized iterative algorithm
with the reversed-form FFT acceleration is summarized as following.
For the mth transmit antenna, the iteration is accelerated with FFT
in the frequency domain:

1) Initialization: Same initialization for wm,0, γ0, ∆0 and δ0,
δ1 as a general CG algorithm. Moreover, initialize Ψn1,n2 =
FFT (Yn1,n2) for n1 ∈ [1, N ] and n2 ∈ [1, N ].

2) Iteration: for j = 1 : J : To compute the MIMO matrix-vector
multiplication Γj = Rrr∆j−1in frequency domain, we first
initialize the partitioned vector Γj = [ΓT

j,1, · · · ,ΓT
j,N ]T = 0.

Then, for n2 = 1 : N , we compute the element-wise FFT
Fj,n2 = FFT ([∆T

j−1,n2 01×L]). In the inner loop for n1 =
1 : N , the frequency domain dot-product and the element-wise
IFFT are computed as following:

Φn1,n2 = Fj,n2 ◦ Ψn1,n2 ; (14)

Θn1,n2 = IFFT (Φn1,n2); (15)

Γj,n1,n2(l) = θn1,n2(l + L) l ∈ [0, L]; (16)

Γj,n1 = Γj,n1 + Γj,n1,n2 ; (17)

where “◦” denotes “dot-product”. With the partitioned Γj

vector, the scalars are computed as δj+1 =
�N

n=1 ΓH
j,nΓj,n;

ωj =
�N

n=1 ∆H
j−1,nΓj,n; α = δj/ωj and β = δj+1/δj . The

final equalizer taps are adjusted in the same manner as the
conventional CG iteration.

Because the FFT of the covariance vectors is not dependent on the
iteration and transmit antenna, we can first compute the FFT results
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Fig. 3. The BER performance of a fully loaded system (K = 14) under 13
taps modified Pedestrian-B channel for a 2 × 2 MIMO system.

of the covariance vectors in the initialization part common to all M
transmit antennas and J iterations. The result is saved in distributed
ΨN×N sub-vectors for the N receive antennas. The channel vector
is also partitioned into N sub-vectors. This reduces the number of
FFTs for this part from (N2 ∗ J ∗ M) to only N2. In the iteration
part, the Γj vector is first partitioned and initialized to zero vectors.
By re-arranging the loop structure of n2 and n1, the FFT of the zero-
padded ∆j−1,n2 vector is only necessary for the outer loop. Thus,
we only need to compute the frequency domain dot-product and the
IFFT for individual Γj,n1,n2 in the inner loop. An accumulator will
generate the Γj,n1 sub-vectors. After the n1, n2 loop, two scalars
δj+1 and ωj are computed from the inner product.

IV. PERFORMANCE AND COMPLEXITY

A. Performance

We provide the simulation results in a MIMO HSDPA simulation
chain for long delay spread channels. We compare the performance
of four different schemes: the LMS algorithm, the FFT circulant
approximation in [5], the DMI using Cholesky decompositions and
the proposed FFT accelerated CG algorithm. The I-METRA modified
Pedestrian-B channel models with 13 and 15 paths and mobile
speed of 3 km/h [8] are simulated. The channel state information is
estimated from the CPICH (Common Pilot Channel) at the receiver.
10% of the total transmit power is dedicated to the pilot symbols.
In the figures, Lh is shown as the channel delay spread. Fig. 3
and Fig. 4 show the performance for Lh = 13 and Lh = 15
respectively. To show the potential of the iterative algorithm, 8
iterations are computed. Both the CG and FFT-based algorithm show
small divergence from the DMI at the small to medium SNR range.
Both the CG and the circulant approximation FFT solution are much
better than the LMS solution. For the very high SNR range, we see
the performance degradation with the circulant approximation in this
very bad channel situation. In the range of SNR > 16 dB, the FFT-
based circulant approximation even fails because the high condition
number corrupts the stability of the system equation. But the FFT
accelerated iterative algorithm follows the DMI solution very closely.

B. Numerical Stability

The system stability is determined by the condition number of the
system matrix. The condition number of a matrix is defined as the
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Fig. 4. The BER performance of fully loaded system (K = 14) under 15
taps modified Pedestrian-B channel for a 2 × 2 MIMO system.

TABLE I
CONDITION NUMBER VS. SNR: Lh = 13 & Lh = 15

SNR(dB) 8 12 16 20 24 Lh

κ(Rrr) 7.9 14.3 28.7 44.9 79.7
κ(Rcir) 11.0 53.5 97.6 417.8 1280 13

κ(Rrr) 16.6 32.1 55.3 64.3 92.2
κ(Rcir) 33.7 75.2 190 1501 3302 15

ratio of the maximal eigenvalue over the minimum eigenvalue as
κ(Rrr) = λmax(Rrr)

λmax(Rrr)
. If the condition number is large, the matrix

tends to be ill conditioned with the convention that κ = ∞ for
a singular matrix. An ill conditioned matrix has very bad numerical
sensitivity in matrix inverse. In the following, we analyze the 2-norm
condition number of the original covariance matrix and the circulant
approximation matrix used in [5] for different SNR ranges. In the top
part of Table I, the condition number κ(Rrr) is shown for an Lh =
13 channel. The Rrr and Rcir are the original covariance matrix
and the circulant approximation matrix, respectively. The original
matrix is reasonably well or mild conditioned. The condition number
increases for higher SNR. After the corner is added to make Rcir ,
the condition number becomes worse with increasing SNR. This is
compatible with the analysis and reduces the numerical stability in
the tap solver. In the bottom part of Table I, we analyze the condition
number for a more difficult channel case when Lh = 15. First we
notice that the condition number is higher than the Lh = 13 case.
After adding the corner to form Rcir , the condition number increases
dramatically, especially for SNR = 24 dB, κ(Rcir) becomes 3290,
which may lead to the singularity of the circulant matrix for fixed-
point numerical solution with limited word length.

C. Complexity

Fig. 5 shows the complexity with different CG iteration architec-
tures for increasing channel length. The DMI is not shown because
its O((NL)3) complexity is obviously much higher. DMM/FIR-EF
refers to the Direct-Matrix Multiplication using Expanded-Form FIR
as in (13). DMM/FIR-RF denotes the Reversed-Form FIR architec-
ture. It is shown that the conventional CG algorithm using either
DMM architecture has O{MJ(N(L+1))2} complexity and the EF’s
complexity is higher than the RF because RF’s filter length is shorter.
FFT-EF indicates the FFT-based architecture with the Expanded-
Form in (12) and FFT-RF denotes the FFT-based architecture for
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Fig. 5. The complexity of equivalent Matrix-Vector Multiplication architec-
tures.

the reversed-form matrix. It is shown that both have complexity
at order of several FFT operations. Because the number of FFTs
in the iterative MIMO chip equalizer is (N2 + MNJ) and the
number of IFFTs is M ∗ (N2 + J), the dominant complexity is
given by O{(M ∗ N2 + MNJ)/2 ∗ (2L + 1) ∗ log2(2L + 1)} for
simplicity. Moreover, the proposed FFT-RF has the lowest complexity
because the FFT length is reduced. It has been shown in [5] that the
complexity of the FFT-based circulant approximation is O{[(N2/2+
2MN)(log2 LF ) + (N3 + MN2)]LF /2}, where the LF ≤ 3L + 1
is determined by simulation. Thus, the FFT-RF acceleration has
comparable complexity as the circulant approximation but better
numerical stability and BER performance for very long channels.
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