
LOW COST DECISION FEEDBACK EQUALIZER (DFE) DESIGN FOR 

GIGA-BIT SYSTEMS 

Chih-Hsiu Lin and An-Yeu(Andy) Wu

Graduate Institute of Electronics Engineering, and

Department of Electrical Engineering, National Taiwan University

Taipei, 106, Taiwan, R.O.C.

ABSTRACT

This paper addresses the design of a Decision
Feedback Equalizer (DFE) for gigabits throughput rate in

each communication path of 10G base LX4 Ethernet system.

It is well-known that the feedback loop within a DFE limits

an upper bound of the achievable speed. For a L-tap

Feed-Backward Filter (FBF) with word-length W and

M-Pulse Amplitude Modulation (PAM) modulated signal,

the authors of [1][2] reformulate the FBF as a (log2M)L-to-1

multiplexer. Due to the reformulation, the overhead of extra

adders and extra multiplexers are as large as (log2M)L. The 

required hardware overhead should be more severe when

the DFE is designed in parallel. In this paper, we propose

two new approaches to implement the DFE when Giga-bit

speed is required. The first approach is partial

pre-computation, which can trade-off between hardware

complexity and computation speed. The second approach is

two-stage pre-computation, which can be applied to higher

speed applications. We can reduce the hardware overhead to

about 2(log2M) (-L/2) times of [1][2], and the iteration bound

is 2(log2W+2)/L+(log2M) multiplexer-delays. We

demonstrate the proposed architectures to the 10G base LX4 

Ethernet system.

1. INTRODUCTION

Pipeline scheme is successfully employed to increase

the computation speed of the communication Equalizer

Design [4][5]. Another approach to achieve high speed

computation is parallel implementation [6][7]. We can relax

the clock time to N-times for N-parallel implementation.

Exploiting both pipeline and parallel processing for high

speed applications are straightforward for non-recursive

computations. However, recursive computations, such as 

DFEs, can not be easily pipelined or processed in parallel

due to the feedback loops in these filters. For a filter with a

loop, retime approach [9] can be used to move the delay

elements of a shorter path to a longer path in loops; then, a 

smaller critical path can be obtained. However, retime 

approach can not shorten the iteration bound. Moreover,

retime approach can not achieve the iteration bound in most

cases. In order to achieve iteration bound, we can unroll a 

loop, which is referred as the unfolding scheme [5][7], and

then apply the retiming approach. 

However, for gigabits throughput rate in each 

communication path, all the aforementioned approaches can

not achieve the desired speed. Fig. 1 is a conventional DFE

architecture. The critical path of this DFE is one multiplier,

one slicer, and two adders as drawn in bold line. For

Ethernet 10G base LX4 [11], the modulation scheme is 

2-PAM; therefore, the multiplier can be replaced by one

2-to-1 multiplexer. The iteration bound reduces to one

multiplexer and two adders. This critical path does not meet

the required speed, i.e., 0.32 ns. The authors of [1][2]

reformulate the FBF as 2L-to-1 multiplexers. The iteration

bound is reduced to one multiplexer. The delay time of one

multiplexer is 0.14 ns in UMC 0.18 m process technique.

Again, the computation speed of the architecture [1][2] can

not provide a delay element with enough margins. Despite

that unfolding approach can be employed to achieve the 

desired throughput rate, the overhead will be extremely

large.

In this paper, both hardware cost and computation

speed are taken into account. Motivated by [1][2], two new

approaches are proposed in this paper. The first approach is

to pre-compute and sum the partial outputs of the FBF. This

approach can be used to trade off between hardware

complexity and computation speed. For higher speed

applications, the second approach is proposed to reformulate

the FBF as two-stage pre-computation. For M-PAM

modulations and a L-tap FBF with wordlength W, we can 

reduce the hardware overhead to about 2(log2M) (-L/2) times

of [1][2]. The iteration bound is only 2(log2W+2)/L+(log2M)
multiplexer-delays.

D

DDD DD

FFF FBF

y(n)

a
L-1a

1b
1

a
Lb

M-1
b

M

-

+

Fig. 1 The architecture of a DFE and its iteration bound.

2. REVIEW OF THE REFORMULATED FBF

SCHEME [1][2]

We show a 2-tap FBF of a DFE in Fig. 2(a). The

modulation scheme is 2-PAM. Fig. 2(b) is an alternative

architecture by using retiming scheme. The critical path is

one multiplexer delay. Furthermore, for an L-tap FBF, the

fanout of the last stage multiplexer is 2L-1. This will

increase the delay time of this multiplexer. By using this

reformulation approach, the whole overhead cost is 2L

adders and (2L-1) 2-to-1 multiplexers. However, this

architecture cannot provide margin enough for a delay

element to process correctly for a 3.125Gs/b throughput rate

in 10G base LX4 Ethernet system. To achieve 3.125 Gb/s,

unfolding approach must be adopted. For an N-unfolding

III - 10010-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡



implementation, the hardware cost is about N times.

Therefore, this hardware cost of this architecture is very 

consumptive, especially when L is large.

(a) (b)

y(n)-(+a
1
+a

2
)

D D

1
0

1
0

1
 0

y(n)-(+a
1
-a

2
)

y(n)-(-a
1
+a

2
)

y(n)-(-a
1
-a

2
)

1
0

1
0

1
 0

D

D

y(n+1)-(+a
1
+a

2
)

y(n+1)-(+a
1
-a

2
)

y(n+1)-(-a
1
+a

2
)

y(n+1)-(-a
1
-a

2
) D

Fig. 2 (a) Reformulated 2-tap FBF of a DFE [1][2], (b) the retimed 

of the reformulated 2-tap FBF.

3. PRE-COMPUTATION DFE

In Fig. 1, when the transmitted signal is modulated by

2-PAM, the iteration bound is the computation delay of 2 

adders and 1 multiplexer. The delay of a full adder and

multiplexer is 0.28 and 0.14 ns in UMC 0.18 m process

technique, respectively. Therefore, the conventional DFE

can not be employed to the application, in which the 

throughput rate is higher than gigabits per second. First, we

discuss the partial pre-computation approach. Next, we

present the two-stage pre-computation approach.

3.1 Partial Pre-Computation

Motivated by [1][2], we pre-compute and sum the 

partial outputs of the FBF, and then use a multiplexer to

select the correct output. By doing so, extra delay elements

can be used to pipeline the feedback loops. To clarify the

presentation, we denote TM, Tadd, TFA, and Tmux as the delay

of one multiplier, adder, full adder, and multiplexer,

respectively. As depicted in Fig. 1, the critical path is in the 

inner loop, i.e., the path through multiplier a1. When the

transmitted signal is modulated as M-PAM, the multiplier a1

can be replaced by log2M-to-1 multiplexer. Furthermore, we 

can implement adders by carry-save adder, and then apply a

multiplexer-based tree binary-look ahead carry generation

Adder [10] to generate the output. For a wordlength W adder,

the latency of a two-binary-adder by using [10] is

(log2W+2)Tmux. Therefore, the whole delay time can be

reduced to 2TFA+(log2W+log2M+2)Tmux.

To speed up the computation of a DFE, we must

reduce the critical path in a FBF. If we pre-compute N terms

of a FBF, then we have extra N-delay elements to pipeline

the feedback loop. An example of 2-term pre-computation is

depicted in Fig. 3. The critical path can be reduced to 1/3

times. Although, the critical path is reduced to 1/(N+1) (N = 

2 for 2-term pre-computation) times in the inner loop, the

critical path is bounded by the adders in the rest of the FBF.

Implementing a DFE like Fig. 3, we can use the N delay

elements to pipeline the inner loop, and the critical path of

the implementation can be reduced to TFA, i.e., 0.28 ns in

UMC 0.18 m process technique. Therefore, the throughput

rate of the partial pre-computation can be up to gigabits.

Moreover, we can implement a FBF in an alternative way,

as shown in Fig. 4; especially when N is large enough. The

critical path can be reduced to be shorter than TFA.

In summary, for a small N-term pre-computation, the 

critical path is about (2TFA+(log2W+log2M+2)Tmux)/(N+1).

We implement a DFE like Fig. 3. For a larger N, we

implement a FBF as in Fig. 4 to achieve a shorter critical 

path. The extra hardware costs of both architectures are 2N

adders and 2N 2-to-1 multiplexers in N terms

pre-computation DFE. In general, N must be chosen as

smaller than L/2. This will be obvious in next section.

D D

4
-to

-1
 M

U
X

y(n)-(+a
1
+a

2
)

y(n)-(+a
1
-a

2
)

y(n)-(-a
1
+a

2
)

y(n)-(-a
1
-a

2
)

DDD2D

a
3

a
L-1

a
L

Fig. 3 The architecture of a DFE by using 2 terms

pre-computation architecture

D D

2
N
-to

-1
 M

U
X

y(n)-(+a
1
+a

2
+...+a

N
)

N-D

a
N+1

a
L

D D
a

N+2

y(n)-(+a
1
+a

2
+...-a

N
)

y(n)-(-a
1
-a

2
-...-a

N
)

DD
a

L-1

Fig. 4  The architecture of a DFE by using N terms

pre-computation approach. 

3.2 Two-Stage pre-Computation

In partial pre-computation method, we can trade off

between hardware cost and computing speed. However, for

very high-speed application, such as 10G base LX4, a small

N-terms pre-computation can not provide a delay element

with margin enough in UMC 0.18 m process technique. As

shown in Fig. 4, the critical path is limited by computing the

sum of the outputs of aN+1, …, and aL. Therefore, if these

terms are also pre-computed separately and simultaneously,

we can shorten the path delay just at the price of smaller

hardware cost. As illustrated in Fig. 5, the L-tap FBF is

divided into two parts; One is the summation of the last

terms, i.e., weight aI+1 and aL, called the 1st stage

pre-computation. The 2nd stage sums the first I terms. The 

output, y(n), of the FFF can be added by one of these two

parts. Below, we discuss the properties of this scheme:

Partition scheme: The outputs of each tap-delay line in 

the FBF can be partitioned into one of two parts, but

leads to different iteration bound. The best grouping is 

to put the first terms in one group, and the rests are 

grouped together.

Asymptotic iteration bound: For a L-tap FBF, the

iteration bound of the two-stage pre-computation

III - 1002

➡ ➡



method is 1/(I+1)Tadd+(log2M)Tmux. Since the input

number of this adder is 2, we can implement it by

using a multiplexer-based tree binary-look ahead carry 

generation Adder [10]. The latency of a W-bit binary

adder can be as short as (log2W+2)Tmux. The

complexity of the proposed architecture is as only

2(log2M) (-L/2) time as [1][2]. Moreover, the iteration

bound of both two architectures is close to (log2M)Tmux

[1][2] as L becomes large.

Low power: For a communication system in which the

channel changes very slowly, we can compute these

sums of each stage and store in memories. In the 1st

stage pre-computation, no new data is inputted when a

slicer operates in data mode. We can compute the sum,

store in memories. We need not update in each symbol;

therefore, the computing power can be saved. In the 2nd

stage, y(n), the output of FFF, changes in each sample

time, either when a slicer operates in training mode or 

data mode. Therefore, the computing power can not be

saved in the 2nd stage. 

Large fanout impairment: As shown in Fig. 2(b), the

fanout number of the multiplexer in the last stage is 

exponential to the tap-size of the FBF. This will

increase the delay time of the last multiplexer. In the

proposed architecture, the fanout number is degraded

extremely compared with [1][2], so that the increased

latency can be mitigated. However, each output of the

1st stage is carried into (log2M)I adders. That is the

fanout of 1st stage is equal to wordlength of the FBF.

The large fanout will also increase the latency. In the

practical design, some approaches can be used to 

mitigate the impairment. This will be shown in 

Section 4. 

D D

2
I -to

-1
 M

U
X

y(n)-(+a
1
+a

2
+..+a

I
)

I D

2
J-to

-1
 M

U
X

y(n)-(+a
1
+a

2
+..-a

I
)

y(n)-(-a
1
-a

2
-..-a

I
)

+a
I+1

+a
I+2

+..+a
L

+a
I+1

+a
I+2

+..-a
L

-a
I+1

-a
I+2

-..-a
L

D

Fig. 5  Architecture of an L-tap FBF by applying Two-stage

pre-computation approach. 

4. APPLICATION TO Ethernet 10GBase-LX4

In 10G base LX4 Ethernet system, the communication

is over 4 fibers. The transmitted signal is coded by 8B/10B

scheme and modulated by 2-PAM. The actual date rate in

each path is 3.125 Gb/s. That is the clock time of an

equalizer must be 0.32 ns. The delay of a full adder and a 

delay element in UMC 0.18 m technique process is 0.28 ns

and 0.25 ns, respectively. The designed tap-size of the FFF

and FBF is 8 and 6, respectively, and the word-length is 8.

Therefore, it is impossible to pipeline the FFF to achieve the

clock time. Parallel scheme must be used to have enough

margins for a delay element.

In Section 3.1, we propose the partial pre-computation

approach to increase the computation speed of a FBF.

Despite that the very low extra hardware overhead of the

proposed partial pre-computation scheme, the proposed

partial pre-computation can not achieve the desired

throughput rate of 10G base LX4 in UMC 0.18 m process

technique. Therefore, we use the two-stage pre-computation

approach to design the FBF. To implement this FBF with the

lowest hardware cost, I must be chosen as 3. Then, the

iteration bound is 2.25 Tmux and the cost is 16 adders and 14

multiplexers. As aforementioned, we design the DFE by

4-unfolding implementation to provide sufficient margin for

a delay element.

4.1 Architecture of a 6-Tap FBF with 4-Unfolding

We depict the 4-unfolding architecture of a 6-tap FBF

in Fig. 6. The delay time of a Vector Merge (VM) Unit is

5Tmux[10]. The overall critical path is Tmux as drawn in dash

line. Moreover, the multiplexers A02, A12, A22, A32, B02, B12,

B22, and B32 suffer from the large fanout. In order to achieve

the desired throughput rate, the architecture of Fig. 6 is 

retimed as in Fig. 7. We discuss some design efforts in detail

as follows:

Employ inverted multiplexer: The delay of a 

multiplexer with an inverted output is faster than a 

multiplexer without inverter output in the standard cell 

library. For the clarification of presentation, we call a

multiplexer with an inverted output an inverted

multiplexer. In UMC 0.18 m technique process, the

latency of an inverted multiplexer can be as a half as a 

multiplexer and is denoted as Tmuxi. Moreover, when the 

selector of a multiplexer is inverted, we just exchange

the two inputs. Then, the output of the multiplexer will 

be the same. Therefore, we replace some multiplexers

with inverted multiplexers in our design. While the

outputs of the multiplexers A02, A12, A22, and A32 is

added by the sum of 1st stage pre-computation, we do 

not replace these multiplexers with inverted

multiplexers; otherwise, the output values will be

changed. On the other hand, the fanout number of these

multiplexers is 16; therefore, a multiplexer with large

driving capacity is chosen. 

Isolate large fanout by inserting buffers: As showing in

Fig. 6, the fanout of the multiplexers B02, B12, B22, and 

B32 is also very large. To shorten the latency, we apply

one inverter and buffer to increase the driving capacity,

as showing in Fig. 7. By doing so, we can mitigate the

degradation of the delay time in the critical path due to

the large fanout. For example, the fanout of multiplexer

B02 is multiplexers A02, A11, A20, B30, B21, and B12. We

insert one buffer to drive A11 and cascade another to A20,

which has the largest loading capacity. This can reduce

the fanout of multiplexer. Then, the critical path

through B02, A02, VM, B00, and B01 is reduced. Also, we

apply one inverter to drive the buffer and the rest

multiplexers.

Retiming scheme: Although, we can reduce the latency

from B02 to A02 (example above), the latency from B02 to

A11 and A20 is increased. To solve the problem, we can 

III - 1003

➡ ➡



apply retime approach. For example, the latency from 

B02 to A11 is two multiplexers, one inverter, and one

buffer delay time. Therefore, the delay element D1 must

be moved to the front of the VM Unit. Then, the latency

from B10 to A12 is close to from B02 to A12. Therefore,

the effect of the delay time of the inserted buffer can be

eliminated. D2 and D3 are retimed by using the same

way. The architecture of Fig. 6 is retimed as in Fig. 7.

In summary, after some modifications, the critical path is in

dash line and the latency is 0.9 ns, which is evaluated by 

using UMC 0.18 m technique process. It can provide the

delay element with margin enough. The extra overhead is

only 64 adders and 56 2-to-1 multiplexers. The types of

cells are listed in Table 1.

Table 1 The table list the types and delay time of all cells.

5. CONCLUSION

In this paper, we proposed two new schemes to 

speed up the computation of a FBF. The proposed

architecture can reduce the hardware overhead extremely,

and the latency is increased slightly. The partial

pre-computation can trade-off between hardware complexity

and computation speed. Two-stage pre-computation can be

used for very high speed applications and applied to 10G

base LX4 Ethernet system.

6. REFERENCE

[1] K. K. Parhi, “Pipelining in algorithms with quantizer loops,” IEEE

Trans. on Circuits and Systems, vol. 37, no. 7, pp. 745-754, July 1991.

[2] S. Kasturia and J.H. Winters, “Techniques for high-speed

implementation of nonlinear cancellation,” IEEE J. Select. Areas

Commun., vol. 9, no. 5, pp. 711-717, June 1991.

[3] Kamran Azadet Erich F. Haratsch, Helen Kim, et al. “Equalization and 

FEC techniques for optical transceivers,” IEEE J. Solid-State Circuits,

vol. 37, no. 3, pp. 317-327, Mar 2002.

[4] P. M. Kogge, The Architecture of Pipelined Computers. McGraw-Hill,

1981.

[5] K. K. Parhi and D. G. Messerschmitt, “Pipeline interleaving and 

parallelism in recursive digital filter- Part I and II, “ IEEE Trans. on 

Acoustics, Speech, and Signal Processing, vol. 37, no. 7, pp.

1099-1135, July 1989.

[6] J. I. Acha, “Computational structures for fast implementation of L-path

and L-block digital filters,” IEEE Tran. on Circuits and Systems, vol.

36, no. 6. pp. 805-812, June 1989.

[7] L. E. Lucke and K. K. Parhi, “Parallel processing for rank order and 

stack filter,” IEEE Trans. on Signal Processing, no. 5, pp. 1178-1189,

May 1994.

[8] L. F. Chao and E. Sha, “Retiming and unfolding data-flow graphs,” in

Proc. of 1992 International conference on Parallel Processing, part II,

(St. Charles, IL), pp. 33-40, Aug. 1992.

[9] C. Leiserson, F. rose, and J. Saxe, “Optimizing synchronous circuitry

by retiming,” in third Caltech Conference on VLSI, pp. 87-116, 1983.

[10] K. K. Parhi, “Fast low-power VLSI binary addition”, in Proc. Of 1997 

IEEE International Conference on Computer Design (ICCD), pp. 

676-684, Oct. 1997.

[11] IEEE Std 802.3ae-2002 (Amendment to IEEE Std 802.3-2002)

D
0

B
0

0
8

-4
 M

U
X

B
0

1
4

-2
 M

U
X

B
0

2
2

-1
 M

U
X

V
e
c
to

r

M
erg

e

B
1

0
8

-4
 M

U
X

B
1

1
4

-2
 M

U
X

B
1

2
2

-1
 M

U
X

V
e
c
to

r

M
erg

e

D
1

B
2

0
8

-4
 M

U
X

B
2

1
4

-2
 M

U
X

B
2
2

2
-1

 M
U

X

V
e
c
to

r

M
erg

e
D

2

A
2
0

8
-4

 M
U

X

A
2
1

4
-2

 M
U

X

A
2

2
2

-1
 M

U
X

A
1

0
8

-4
 M

U
X

A
1

1
4

-2
 M

U
X

A
1

2
2

-1
 M

U
X

A
0

0
8

-4
 M

U
X

A
0

1
4

-2
 M

U
X

A
0

2
2

-1
 M

U
X

B
3

0
8

-4
 M

U
X

B
3

1
4

-2
 M

U
X

B
3

2
2

-1
 M

U
X

V
e
c
to

r

M
erg

e

D
3

A
3

0
8

-4
 M

U
X

A
3

1
4

-2
 M

U
X

A
3

2
2

-1
 M

U
X

D
D

D

a
1
+a

2
+a

3

a
1
+a

2
-a

3

a
1
-a

2
+a

3

a
1
-a

2
-a

3
-a

1
+a

2
+a

3

-a
1
+a

2
-a

3

-a
1
-a

2
+a

3

-a
1
-a

2
-a

3

a
1
+a

2
+a

3

a
1
+a

2
-a

3

a
1
-a

2
+a

3

a
1
-a

2
-a

3
-a

1
+a

2
+a

3

-a
1
+a

2
-a

3

-a
1
-a

2
+a

3

-a
1
-a

2
-a

3

a
1
+a

2
+a

3

a
1
+a

2
-a

3

a
1
-a

2
+a

3

a
1
-a

2
-a

3
-a

1
+a

2
+a

3

-a
1
+a

2
-a

3

-a
1
-a

2
+a

3

-a
1
-a

2
-a

3

a
1
+a

2
+a

3

a
1
+a

2
-a

3

a
1
-a

2
+a

3

a
1
-a

2
-a

3
-a

1
+a

2
+a

3

-a
1
+a

2
-a

3

-a
1
-a

2
+a

3

-a
1
-a

2
-a

3

a
4
+a

5
+a

6

a
4
+a

5
-a

6

a
4
-a

5
+a

6

a
4
-a

5
-a

6
-a

4
+a

5
+a

6

-a
4
+a

5
-a

6

-a
4
-a

5
+a

6

-a
4
-a

5
-a

6

a
4
+a

5
+a

6

a
4
+a

5
-a

6

a
4
-a

5
+a

6

a
4
-a

5
-a

6
-a

4
+a

5
+a

6

-a
4
+a

5
-a

6

-a
4
-a

5
+a

6

-a
4
-a

5
-a

6

a
4
+a

5
+a

6

a
4
+a

5
-a

6

a
4
-a

5
+a

6

a
4
-a

5
-a

6
-a

4
+a

5
+a

6

-a
4
+a

5
-a

6

-a
4
-a

5
+a

6

-a
4
-a

5
-a

6

a
4
+a

5
+a

6

a
4
+a

5
-a

6

a
4
-a

5
+a

6

a
4
-a

5
-a

6
-a

4
+a

5
+a

6

-a
4
+a

5
-a

6

-a
4
-a

5
+a

6

-a
4
-a

5
-a

6

Cell

name

A 02, A 12,

A 22, A 32

B 02, B 12,

B 22, B 32

B 01, B 11,

B 21, B 31

The rest inverted

multiplexers

Type X4 X4 X2 X1

Fig. 6 The architecture of the proposed 4-unfolding FBF.

Buf

Buf

Buf

D

D

D

DD

D

D

D

INV

INV

INV

INV

a
1
+a

2
+a

3

a
1
+a

2
-a

3

a
1
-a

2
+a

3

a
1
-a

2
-a

3

-a
1
+a

2
+a

3

-a
1
+a

2
-a

3

-a
1
-a

2
+a

3

-a
1
-a

2
-a

3

a
1
+a

2
+a

3

a
1
+a

2
-a

3

a
1
-a

2
+a

3

a
1
-a

2
-a

3

-a
1
+a

2
+a

3

-a
1
+a

2
-a

3

-a
1
-a

2
+a

3

-a
1
-a

2
-a

3

a
4
+a

5
+a

6

a
4
+a

5
-a

6

a
4
-a

5
+a

6

a
4
-a

5
-a

6

-a
4
+a

5
+a

6

-a
4
+a

5
-a

6

-a
4
-a

5
+a

6

-a
4
-a

5
-a

6

a
4
+a

5
+a

6

a
4
+a

5
-a

6

a
4
-a

5
+a

6

a
4
-a

5
-a

6

-a
4
+a

5
+a

6

-a
4
+a

5
-a

6

-a
4
-a

5
+a

6

-a
4
-a

5
-a

6

a
4
+a

5
+a

6

a
4
+a

5
-a

6

a
4
-a

5
+a

6

a
4
-a

5
-a

6

-a
4
+a

5
+a

6

-a
4
+a

5
-a

6

-a
4
-a

5
+a

6

-a
4
-a

5
-a

6

a
4
+a

5
+a

6

a
4
+a

5
-a

6

a
4
-a

5
+a

6

a
4
-a

5
-a

6

-a
4
+a

5
+a

6

-a
4
+a

5
-a

6

-a
4
-a

5
+a

6

-a
4
-a

5
-a

6

D

VM

VM

VM

VM

VM

VM

VM

VM

B
0

0 B
0

1

D

B
0

2

B
0

1

B
0

0
B

0
0

B
0

0

DVM

VM

VM

VM

VM

VM

VM

VM

B
1

2 B
1

1

B
1

0

D

D

D
D

D

D

D

B
1

2
B

1
2

B
1

2

B
1

1

VM

VM

VM

VM

VM

VM

VM

VM

B
2
2 B

2
1

B
2

0

3 MUXI

delay

2 MUXI

delay

PipeLine

a
1
+a

2
+a

3

a
1
+a

2
-a

3

a
1
-a

2
+a

3

a
1
-a

2
-a

3

-a
1
+a

2
+a

3

-a
1
+a

2
-a

3

-a
1
-a

2
+a

3

-a
1
-a

2
-a

3

B
2

2
B

2
2

B
2

2

B
2
1

VM

VM

VM

VM

VM

VM

VM

VM

B
3

2 B
3

1

B
3

0

a
1
+a

2
+a

3

a
1
+a

2
-a

3

a
1
-a

2
+a

3

a
1
-a

2
-a

3

-a
1
+a

2
+a

3

-a
1
+a

2
-a

3

-a
1
-a

2
+a

3

-a
1
-a

2
-a

3

B
3

2
B

3
2

B
3

2

B
3

1

A
0

2

A
0

1

A
0

0 D

D

D

D

A
0

1

A
0

0
A

0
0

A
0
0

A
1

2

A
1

1

A
1

0

A
1

1

A
1

0
A

1
0

A
1

0

A
2

2

A
2

1

A
2

0

A
2

1

A
2

0
A

2
0

A
2

0

A
3

2

A
3

1

A
3

0

A
3

1

A
3

0
A

3
0

A
3

0

Buf

Buf

Buf

X20

X8

X20

Buf

Buf

X8

X20

X8
X20

X8

X8

X8

X8

X8

Fig. 7 The proposed 4-unfolding FBF after applying the retime 

approach and some modifications.

III - 1004

➡ ➠


