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ABSTRACT

This paper investigates the combinatorial mechanism of a 

general case of exponential backoff (EB) with factor r and

retransmission cutoff with traffic sources consisting of 

infinite number of stations in ideal channel conditions. A 

new, simple but more exact infinite-station bi-dimensional 

discrete-time analytical model based on Markov chain, to 

reflect the actual behavior of this combinatorial 

mechanism, is presented. By means of the proposed model, 

we provide an extensive performance evaluation, and new 

analytical results are given. We also obtain the analytical 

expressions for the maximum saturation throughput, 

which converges to a non-zero constant as the station 

number goes to infinity. The accuracy of the analysis is 

verified by elaborate simulation results. In addition, the 

packet rejection rate is discussed for various values of 

system offered load and initial minimum contention 

window. 

1. INTRODUCTION 

Medium access control (MAC) protocols are the key part 

for wireless local area networks (WLANs). Among them, 

exponential backoff (EB) scheme and retransmission 

cutoff scheme are of practical interest from the viewpoint 

of feasibility to implement. Since they require neither to 

track feedback information nor to estimate the number of 

backlogged packets. 

In existing networks, retransmissions of a packet will 

be cut off and also a packet will be discarded after a 

certain number of unsuccessful transmissions in order to 

avoid excessive collisions among retransmitted packets 

and to satisfy delay constraints associated with a packet. 

The value of retransmission cutoff should be determined 

according to quality of service to be guaranteed. In [1, 5], 

it has been assumed that packets which fail in correct 

reception have to be retransmitted until correctly received, 

whereas the packet retry limit is not be considered. In this 

paper, we restrict the number of retransmission trials to a 

finite value and permit packet droppings. 

Most of papers, such as [4, 6], study EB and/or 

retransmission cutoff in the context of a specific network 

MAC protocol; however, the characteristics of those 

protocols seem to have as much or more effect on network 

performance than the intrinsic behavior of EB and 

retransmission cutoff. Here we focus on combinatorial 

mechanism of EB and retransmission cutoff itself. 

Performance evaluation of combinatorial mechanism 

with all its details and under realistic traffic conditions has 

been considered difficult. Therefore, many papers have 

assumed simpler traffic conditions and/or operations; 

furthermore, simplified and/or modified models are often 

used to make analyses more tractable. As a result, the 

scope of such performance analyses is somewhat limited. 

Because in a WLAN, the number of active stations is 

generally quite large, we assume that traffic sources 

consist of an infinite number of stations. This hypothesis 

approximates a large population in which each station 

generates and transmits infrequently. In this paper, we 

succeed in proposing a new, simple but more exact model 

to reflect the actual behavior of this combinatorial 

mechanism, moreover show that the Markov analysis 

works well. New analytical results and expressions are 

given after we provide an extensive performance 

evaluation. As proven by comparison with simulations, 

the results are extremely accurate and practically exact. 

This paper is organized as follows. Section 2 

describes the practical combinatorial mechanism of EB 

and retransmission cutoff. A Markov model is presented 

in Section 3. We obtain analytical results for performance 

evaluation in Section 4, and verify them by simulations in 

Section 5. Conclusions are drawn in Section 6. 

2. COMBINATORIAL MECHANISM 

We consider a transmission medium shared by infinite n

stations, which are fed by a certain arrival process and try 

to access the channel according to combinatorial 

mechanism: general case of EB with factor r and 

retransmission cutoff. Time is subdivided into slots of 

equal length, and all packets are assumed to be of the 

same duration, equal to the slot time. Furthermore, all 

stations are synchronized so that every transmission starts 
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at the beginning of a slot and ends before the next slot on 

an ideal channel with no transmission errors. 

Fig.1 Markov chain model for combinatorial mechanism

At the beginning of a slot, each station is in one of 

two states: fresh (FS) state (state 0), with packet generated

newly; or retransmission i (RTi) state, with packet 

experienced i unsuccessful transmissions. Each station in

FS state generates and transmits a new packet in a time

slot. While each station in RT state is blocked in the sense 

that it cannot generate a new packet. RT state is further

subdivided into k2 state: 1, 2, … , k2. Stations that have 

succeeded in the (re)transmission return to FS state. On 

the contrary, state transitions of unsuccessful stations

depend on the previous state. Unsuccessful stations in FS

state enter RT1 state and those in RTi state enter RTi+1

state (i=1, 2, … , k2-1). A packet dropping occurs when a 

station in RTk2 state fails its retransmission, so that it 

moves back to FS state. 

At each packet transmission, a random backoff time

is uniformly chosen in the interval [0, CW-1] defined as

contention window. Its value depends on the number of 

transmissions failed for the packet. For the packet’s first 

transmission, CWmin is set to be CW. After each collision,

CW is multiplied by r until it reaches CWmax. Let T(t) be 

the stochastic process representing the backoff timer for a 

given station at slot time t. The backoff timer is 

decremented as long as the channel is sensed idle. It is

“frozen” when a transmission is detected on the channel,

and reactivated when the channel is sensed idle again. The

station transmits when the backoff timer reaches zero.

3. MARKOV MODEL 

The behavior of a single station in this combinatorial

mechanism is studied with an infinite-station bi-

dimensional discrete-time Markov chain model.

Here i [0, k2] is called “backoff stage”. Let k2

represent maximum backoff stage, as specified this value 

could be larger than maximum contention window index

k1, while the CW will hold after that, as shown in (1). Let 

S(t) be the stochastic process representing the backoff 

stage [0, … , k2] of the station at slot time t. Then we have 
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Let pt be the stationary probability that a station will

transmit in an arbitrary slot time. At each transmission

attempt, and regardless of the number of retransmissions

suffered, each packet collides with constant and 

independent probability pc. Therefore, the bi-dimensional

process {S(t), T(t)} is a discrete-time Markov chain,

depicted in Fig.1. In this model, we define P{in+1 , kn+1| in ,
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The first transition probability equation in (2)

accounts for that, at the beginning of each slot time, the 

backoff timer is decremented. The second accounts for

that a new packet following a successful packet 

transmission starts with backoff stage 0. The third

accounts for that an unsuccessful retransmission makes

the backoff stages increase. The fourth accounts for that,

at the maximum backoff stage, the CW will be reset if the

transmission is unsuccessful or restart the backoff stage 

for new packet if the transmission is successful. 

Let })(,)({lim, jtTitSPtji
, i [0, k2], j [0,

CWi -1] be the stationary distribution of the chain. It is

easy to obtain a closed-form solution for this Markov

chain. Firstly 
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Making use of the fact that ( ,

and by the relation between (3) and (4), 
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As any transmission occurs when the backoff timer is

equal to zero, regardless of the backoff stage, we have 
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From  (1), (5) and (6), we obtain 
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The numerical value of pt is also constrained by the

fact that pc can be expressed in terms of pt, that is 
1)1(1 n

tc pp                                                          (8) 

where ( is the probability that none of the other n

-1 stations transmits. Solving (8) for p
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Since (7) and (9) are two constraining equations for pt

as a function of pc, the unique intersection of these two

equations gives the values of pc and pt for given n, CW, r,

k1 and k2. Therefore, (7) and (9) represent a nonlinear

system in the two unknowns pt and pc, which can be 

solved by numerical results. 

Note that we must have pt (0, 1) and pc (0, 1), then 
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In fact, pc is always less than 1/r, which is a necessary 

condition for the system to reach steady state. 

Since the values of denominator and numerator in (7)

both equal to zero when pc =1/r, the probability pt

converges as follows by using L-Hospital
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Note that pt converges to a non-zero constant as n 

goes to infinity and pc goes to 1/r.

4. MAXIMUM THROUGHPUT ANALYSIS 

We investigate the maximum saturation throughput

by calculating the probability that there is a successful

transmission in a time slot, when the number of stations n

goes to infinity. Maximum saturation throughput Smax is a 

fundamental performance figure defined as the limit

reached by the system throughput as the offered load 

increases, and represents the maximum load that the 

system can carry in stable conditions. 

A successful transmission occurs when there is only 

one transmitting station. Thus the probability that there

will be a successful transmission in a time slot is as 
111 )1()1( n

tt

n

ttns pnpppCp                           (12) 

where C is the number of ways of choosing 1 out of n

stations.

1

n

We normalize the slot time as the unit time; then in

any given unit time duration the average number of 

packets successfully transmitted is ps. If we ignore the

packet overhead, the normalized throughput is simply ps.

As we see, since from (1), where 
minCWCW ,

, and the backoff time is uniformly chosen,

we get that p
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k
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optimal contention window size, that is

12

2/

12

2/

,

,

1

2

kkr

kkr
CW

k

k

(13)

Therefore the probability ps converges as follows
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5. SIMULATION 

To validate the model and support our analysis, the event-

driven customer simulation is written in the C++

programming language, which attempts to emulate as 

closely as possible the real operation of each station. It is

assumed that traffic sources with infinite stations

collectively form a Poisson process with offered load on 

system G. In order to make it easy to compare with the

results obtained in other papers, we select factor r=2,

which is called Binary Exponential Backoff (BEB), the

special case of EB. The parameters used here are:

maximum contention window index k1 is equal to 10, then 

; packet retry limit k10242 1

max

kCW 2 is equal to 16 for

various values of CWmin. Simulation results are obtained

by running 1,000,000 time slots.

The simulation results for the normalized system

saturation throughput Ssat in Table 1 and Fig. 2 agree with

those obtained from our analysis, and show that with an 

appropriate setting of the initial minimum contention

window size as optimal window size, the theoretical

maximum throughput bound can be reached. Simulation

result for the extreme case is CWmin =32, G=0.356, Smax

=35.019%. The analytical result is Smax =35.004%, which

practically coincides with the simulation result, in a
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99.957% confidence interval lower than 0.00015, and

shows that the analytical model is extremely accurate. 

TABLE 1 

SIMULATION RESULTS FOR SATURATION THROUGHPUT

CWmin G Ssat

2 0.296 29.054%

4 0.298 29.455%

8 0.340 32.801%

16 0.355 34.417%

32 0.356 35.019%

64 0.348 34.016%

128 0.346 33.753%

256 0.359 34.812%

512 0.350 34.117%

1024 0.338 33.452%

Fig.3 Rejection rate versus offered load 

Moreover, the packet rejection rate R is also

investigated here, which is defined as the percentage of

packets that are discarded. In most realistic situations, a 

small rejection rate is acceptable, especially if the rejected 

packets have been delayed too long to be important. Fig. 3

shows that rejection rate R mounts up nonlinearly with

system offered load G. By comparing the rejection rate 

performance for various values of CWmin, we get that

rejection rate R consistently drops down with continuous

increase of CWmin.

6. CONCLUSIONS 

The new and simple bi-dimensional discrete-time Markov

chain model developed in this paper is suited for

analyzing the combinatorial characteristics of EB and

retransmission cutoff. It is assumed an infinite number of 

stations and ideal channel conditions. Using the proposed 

model, we obtain the analytical performance expressions. 

Comparison with simulation results shows that the model

is extremely accurate in predicting the system maximum

saturation throughput, and in close compliance with
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practical cases under the same network configuration.

From the analysis results, we have that this combinatorial

mechanism guarantees a certain amount of throughput no

matter how many stations are present in the network. The 

packet rejection rate R is also considered, and shown that

R rises nonlinearly with system offered load G, but

decreases all along with continuous increase in CWmin. We

conclude that this combinatorial mechanism efficiently

enhances the system capability for resolving collisions,

and improves the fairness of network contention.

Moreover, this analytical method can also be applied to

analyze network protocols using EB and retransmission

cutoff.
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