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ABSTRACT
Optimal detection of a known FSK-modulated binary signal in ad-
ditive white Gaussian noise using a matched filter receiver requires
knowledge of second-order noise statistics. The dependence on
noise statistics causes the probability of detection to be sensitive
to errors in the noise variance value. This makes optimal scheme
of limited use in situations where the noise statistics are unknown
and cannot be estimated reliably. We propose an alternative ap-
proach, which has a more easily calculated test statistic than the
optimal method and yields a constant false detection rate, regard-
less of noise statistics. While this approach has sub-optimal detec-
tion probability, it will be significantly advantageous in applica-
tions where a primary interest in to strictly limit false detections.
In addition, it allows one to easily determine the required detection
length (in symbols) to achieve a desired performance level.

1. INTRODUCTION

Detection of a signal corrupted by additive white Gaussian noise
is a classic problem arising in many communication and radar sys-
tems. Consider for example a wireless communication device,
such as a cellular telephone or personal pager, which upon power
up must detect and synchronize with a network that indicates its
presence by periodically transmitting a known synchronization sig-
nal. Unfortunately, in such scenarios the optimal detection method
is unable to achieve a constant false detection rate. In this pa-
per, we investigate the detection of a known binary frequency shift
key (FSK) modulated signal corrupted by additive white Gaussian
noise using a matched filter receiver. This known signal could
correspond to a network identifier as described above, an asyn-
chronous transmission indicator, or some other signal that must be
detected for successful operation.

Optimal detection of a known FSK-modulated signal using
a matched filter receiver requires knowledge of the second-order
noise statistics and the transmit signal energy in addition to the
known signal symbols (number, value, and transmit phase). Al-
though the transmit signal energy will generally be known a priori
by the receiver, noise statistics (specifically variance) may be un-
known and possibly time-varying. This requires the detecting sys-
tem to estimate this value and calculate the required detection pa-
rameters in real-time. Poor estimates of noise variance will cause
the actual false alarm rate to differ from the desired value, which
may be highly undesirable for certain scenarios.

We propose an alternative detection scheme, which is still based
on a matched filter receiver, but requires only the length and val-
ues of the known signal to compute the optimal parameters. As a
result, a constant false alarm rate (CFAR) is achieved for this ap-
proach, allowing the probability of a false detection to be strictly

controlled. Achieving this robustness, however, requires sacri-
ficing probability of detection compared to the optimal method.
However, a high probability of detection can be achieved by in-
creasing the transmit signal energy or the length of the signal (num-
ber of symbols).

Matched filtering of an FSK-modulated signal is reviewed in
Section 2 and the statistics of the filtered signals are investigated.
Section 3 outlines the optimal approach to this detection problem
that uses a linear combination of samples from the filtered signals
and requires the noise statistics to optimally make a decision. The
proposed method is motivated, derived, and compared to the opti-
mal method in Section 4

2. MATCHED FILTERING OF AN FSK-MODULATED
SIGNAL

Detection of an FSK-modulated signal can be formulated as a bi-
nary hypothesis testing problem with the hypothesis being the pres-
ence and absence of the modulated signal, respectively.

H0 : No signal present (noise only)

H1 : Signal present

Let bn ∈ {0, 1} for 0 ≤ n < N denote the binary (or sym-
bol) representation of the known length-N signal and βi ∈ R for
i = 0, 1 be the frequencies used to represent a zero and one, re-
spectively. We will assume that β0 �= β1 and (β1 − β0) ∈ Z, al-
though all results presented are approximate when (β1 − β0) /∈ Z

but |β1 − β0| � 0.
The signal at the receiver can be described by

s(t) =
N−1X
n=0

s (t − nT, βbn , θn) + W (t) (1)

where W (t) is a complex1 white Gaussian noise process with vari-
ance N0

2
and s(·, ·, ·) describes a modulated symbol.

s (t, βbn , θn) =

(q
2Es
T

ej2πβbn
t
T

+jθn 0 ≤ t < T

0 otherwise

where θn ∈ [0, 2π) is the initial phase of the nth symbol, T is
the symbol duration, and Es is the signal energy. With proper se-
lection of phase values, this model can describe phase-continuous
modulation.

1W (t) = WR(t) + jWI(t) where WR(t), WI(t) ∼ N
“
0, N0

2

”

and E [WR(t)WI (s)] = 0 for all t, s.
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The matched filters [1] for the signal model described above
are given by

hi(t) = s∗(T − t, βi, 0) i = 0, 1

and have the property

Z T

0

hi(t)s(T − t, βbk
, θk)dt =

2Ese
−jπ(βi−βbk

)ejθk sinc (π (βi − βbk
)) , (2)

which shows that the bth
k filter has the largest response when the

symbol is bk. Plugging the filter definitions in (2), we see that the
matched filters are orthogonal for the assumed conditions β1 �= β0

and (β1 − β0) ∈ Z and each have a norm equal to 2Es.
Let Yi(t) to be the output of the ith matched filter at time t.

Yi(t) =

Z T

0

hi(τ )s(t− τ )dτ i = 0, 1 (3)

Notice that for 0 < t ≤ NT , Yi(t) takes on meaningful values at
integer multiples of the symbol time, and all other times contain
contributions from two symbols. Furthermore, the first symbol,
b0, does not appear at Yi(t) until t = T . We will only consider
Yi(nT ) at these times by defining an observation as

V (n) = VR(n) + jVI(n) = Ybn−1(nT ) 1 ≤ n ≤ N (4)

It it straightforward to show that for 1 ≤ m, n ≤ N

H0 : VR(n) ∼ N (0, EsN0) , VI(n) ∼ N (0, EsN0)

H1 : VR(n) ∼ N (2Es cos θn−1, EsN0) ,

VI(n) ∼ N (2Es sin θn−1, EsN0)

and VR(n) is independent of VI(m).

3. OPTIMAL DETECTION

The detection of a known signal in additive Gaussian noise is a
classic and well studied problem [1,2]. As will be seen, the optimal
decision rule (when noise variance is known) requires knowledge
of the noise variance, which makes the optimal detection method
sensitive to changes in second-order noise statistics.

Let XN denote the length-N vector of observations

XN =
ˆ
V (1) V (2) · · · V (N)

˜T
(5)

Since V (n) are independent random variables, the likelihood ra-
tio of XN = xN is simply the product of the likelihood ratio of
V (n) = v(n) for n = 1, 2, . . . , N . The log-likelihood ratio there-
fore is

log LXN ,N (xN) = log

NY
n=1

pV (n)|H1(V (n) = v(n)|H1)

pV (n)|H0(V (n) = v(n)|H0)

!

=
2

N0

NX
n=1

(vR(n) cos θn−1 + vI(n) sin θn−1 − Es)

=
2

N0
(zN − NEs) ,

where zN =
PN

n=1(vR(n) cos θn−1 + vI(n) sin θn−1) is a sam-
ple value of the random variable

ZN �
NX

n=1

(VR(n) cos θn−1 + VI(n) sin θn−1)

The optimal decision rule is of the form

ZN

H1
>
<

H0

τN ,

for some threshold τN , that in general will vary with N . To achieve
a false alarm probability of α, we employ Neyman-Pearson [2]
hypothesis testing by solving

α = P (ZN > τN |H0) (6)

for τN . It can be shown that

H0 : ZN ∼ N (0, NEsN0)

H1 : ZN ∼ N (2NEs, NEsN0)

which makes the solution to (6)

τN =
√

NEsN0Q
−1 (α) (7)

where Q (x) =
R ∞

x
1√
2π

e−
t2
2 dt and Q−1 (·) is the inverse of this

function. The probability of detection for the threshold calculated
according to (7) is

PD = P (ZN > τN |H1) = Q Q−1 (α) − 2

r
NEs

N0

!
(8)

The optimal method for detecting a known FSK-modulated
length-N signal is to compare a linear combination of the N ob-
servations to a threshold. Selecting the threshold according to (7)
allows for a desired probability of false detection to be achieved,
given values for N0 and Es. The resulting probability of detection
can be made arbitrarily large by increasing either the signal energy
or the length of the known signal.

4. PROPOSED DETECTION APPROACH

The optimal detection method presented in Section 3 requires one
to know or estimate the noise variance in order to calculate the
optimal threshold. In addition, in order to calculate the statistic
required to compare to this threshold, the transmit phases of the
symbols must be known.

In this section, we present our proposed detection scheme that
uses a non-linear combination of samples from both matched fil-
ters to detect the signal. The threshold for this detection scheme
has the property that for a desired probability of false detection, the
same value is optimal for any noise variance. In addition, the test
statistic can be calculated without any phase information, which
means that unlike the optimal case, the same receiver could be
used to detect phase-continuous and non-phase-continuous modu-
lated signals.

V (n) was defined in (4) as the output of the matched filter
containing the signal at t = nT . Let U(n) denote output of the
other matched filter

U(n) = UR(n) + jUI (n) = YbC
n−1

(nT ) 1 ≤ n ≤ N
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where bC
n is the complement of bn. From the definitions of V (n)

and U(n), and the results of Section 2 we can conclude that for
either hypothesis, U(n) has the same distribution as V (n)|H0.

Under both hypotheses the real and imaginary parts of V (n)
and U(n) are independent Gaussian random variables. Therefore,
the magnitude squared of these random variables normalized by
their variance are chi-square random variables with two degrees of
freedom [3, 4].

H0 :
|U(n)|2
EsN0

∼ χ2
2,

|V (n)|2
EsN0

∼ χ2
2

H1 :
|U(n)|2
EsN0

∼ χ2
2,

|V (n)|2
EsN0

∼ χ2
2(λ)

where χ2
p denotes a chi-square random variable with p degrees of

freedom and

λ =
4E2

s

`
cos2 θn−1 + sin2 θn−1

´
EsN0

= 4Es/N0

is the non-centrality parameter that arises only in the alternate hy-
pothesis. By considering |V (n)|2 and |U(n)|2 rather than V (n),
the requirements for phase information are removed, which means
detection based on these values can be performed without knowl-
edge of θn.

Let SN and WN denote the sum of the first N magnitudes
squared of V (n) and U(n), respectively.

SN =
NX

n=1

|V (n)|2 WN =
NX

n=1

|U(n)|2

And, since the sum of chi-square random variables is itself a chi-
square random variable

H0 :
WN

EsN0
∼ χ2

2N ,
SN

EsN0
∼ χ2

2N (9)

H1 :
WN

EsN0
∼ χ2

2N ,
SN

EsN0
∼ χ2

2N (Nλ)

Recalling that the distribution of test statistic(s) under the null hy-
pothesis is directly related to the probability of false detection, it
is apparent from (9) that if Es and N0 are available to normalize
SN and WN , then null hypothesis will depend only on the number
of observations. A decision rule for a given false alarm rate could
therefore be found that only depends on the number of observa-
tions. Removing the dependence of the null hypothesis on Es and
N0 can be accomplished by noting that the ratio of SN to WN ,
which we denote RN , can be written as

RN � SN

WN
=

SN
2NEsN0

WN
2NEsN0

We recognize the last term in the equality as the ratio of two chi-
square random variates, normalized by their degrees of freedom.
Therefore, RN has an F-distribution [4].

H0 : RN ∼ F2N,2N (10)

H1 : RN ∼ F2N,2N (Nλ)

Now we see that RN |H0 depends only on the length of known sig-
nal, N , and not on Es or N0. This fact is key in being able to have
a single test that is universally optimal for all noise variances. In

addition, unlike ZN , the test statistic RN can be computed without
any phase information as it is composed of magnitudes squared.

Given an observation RN = rN , the optimal decision rule is
of the form

LRN ,N (rN)
H1
>
<

H0

γN (11)

where LRN ,N (·) is the likelihood ratio for hypothesis test in (10).
After some algebra, it can be shown that this likelihood ratio has
the following expression.

LRN ,N (r) = e−
λ
2

∞X
k=0

(2N)k

(N)k

„
λr

2(1 + r)

«k
1

k!
(12)

where (A)B is Pochammer’s symbol [3].
Similar to the optimal case, we can achieve a false positive

probability of α by solving

α = P (LRN ,N (RN ) ≥ γN |H0) (13)

for γN . Inspection of (12) and (13) reveals that contrary to what
is suggested by (10), calculating the optimal threshold for (11) re-
quires knowledge of N0 since λ = 4Es/N0. Noting however,
that LRN ,N (·) is a one-to-one, monotonic increasing function, and
therefore so is its inverse, an equivalent detection test to (11) is

rN

H1
>
<

H0

γ̄N

where LRN ,N (γ̄N) = γN . The optimal threshold value can be
found by solving

α = P (RN ≥ γ̄N |H0) (14)

for γ̄N , which we see depends only on the number of signal sym-
bols and not on the signal energy, symbol time, or noise variance.
Once the threshold has been found, the corresponding probability
of detection is

PD = P (RN ≥ γ̄N |H1) (15)

Unfortunately, closed form solutions to (14) and (15) do not exist,
forcing one to resort to numerical methods or tabulated results [3].
However, provided N and α are fixed, the same threshold is op-
timal for any Es and N0 so the threshold satisfying (14) needs to
be found only once. In contrast, the optimal detection method re-
quires a new threshold to be calculated for any change to Es or
N0.

It is interesting to note that detection performance of the opti-
mal and proposed methods depend on N , Es and N0 in much the
same way. If we let

d2 = 4N
Es

N0
,

it is immediately apparent that for α fixed, the probability of de-
tection for the optimal method varies as a function of d while
the probability of detection for the proposed method varies as a
function of N and d2. A comparison between the two methods
can be made by considering the probability of detection as a two-
dimensional function of N and Es/N0. Figure 1 shows these two-
dimensional power functions for the optimal and proposed detec-
tion methods, respectively. Although for the same parameters the
optimal method provides a higher probability of detection than the
proposed method, we can see that by selecting N large enough, the
proposed method will yield an acceptable probability of detection.
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Fig. 1. Power functions for the optimal and proposed detection schemes for α = 0.01. Graph shows how the probability of detection varies
as N and Es/N0 change. It can be seen that the optimal detection method provides a high probability of detection except when N is small
or N0 > 2Es. Although the probability of detection for a given N and Es/N0 is lower for the proposed method than the optimal method,
a high probability of detection can be achieved by selecting N or Es large enough.
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Fig. 2. Sensitivity of the optimal and proposed detection methods
to variations in N0 for α = 0.01. As the true N0 varies from
the value used to calculate the thresholds, the actual probability of
false detection changes greatly for the optimal detection method.
The proposed method, however, yields a constant probability of
false detection regardless of the actual N0 value.

The root cause of the optimal method’s sensitivity to varia-
tions in N0 is that unlike our proposed method, N0 appears in the
threshold calculations (see (7)). Figure 2 illustrates this sensitivity
by showing how the actual probability of false detection for the
two methods behaves as the true N0 changes relative to an esti-
mated N0 used in calculations. We can see that for the optimal
method, an error of 20% in the N0 parameter results in a change
to the probability of false detection of almost 100%. Our proposed
detection scheme does not suffer from this issue and achieves ex-
actly the desired false alarm rate for all N0.

5. CONCLUSIONS

The optimal method of detecting a known FSK-modulated signal
in additive white Gaussian noise using a matched filter receiver
does not guarantee that a desired probability of false detection will
be achieved. This is a direct consequence of the noise variance
being used to calculate the threshold for the decision rule in the
optimal case. The result is that the false alarm rate is sensitive to
changes in the noise variance. Applications which desire to strictly

control the probability of false detection are likely to find the op-
timal method of little use since a change in the noise variance of
20% can translate to a change in the actual false detection proba-
bility by almost 100%.

Our proposed method is able to exactly achieve a desired false
alarm rate regardless of noise statistics. It accomplishes this feat
by considering a sum of values corresponding to the signal divided
by a sum of values corresponding to noise only. This ratio is an
F-distributed random variable, which, when no signal is present,
depends only on the number of symbols in the known signal. The
optimal threshold for this scheme is therefore independent of noise
variance and transmit signal energy, making the same threshold
optimal for any values these parameters take. Although the prob-
ability of detection that this method yields is sub-optimal, it can
be made arbitrarily large by increasing the number of symbols in
the known signal being detected. For a fixed performance criteria
(probability of detection and false alarm), one can therefore cal-
culate the required length of the detection signal in symbols. The
proposed method also removes the need for the transmit phase in-
formation to be known a priori by the receiver. This allows both
phase-continuous and non-phase-continuous FSK-modulated sig-
nals to be detected using the same detection scheme and parame-
ters, a feat not possible with the optimal approach.
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