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ABSTRACT

Nonlinear nature of Holographic Data Storage Systems 

(HDSS) suggests that nonlinear equalization and detection 

techniques may be beneficial. Complexity involved in 

nonlinear methods does not often make them practical 

solutions. Support Vector Machines (SVMs) are recently 

being studied for pattern recognition applications. We 

investigated linear SVM detection and observed that the 

Bit Error Rate (BER) using SVM for data detection on 

Linear Minimum Mean Squared Error (LMMSE) 

equalized holographically recorded and retrieved 2-D data 

pages is about 17% better than the simple threshold 

detection on unequalized pages.  

1. INTRODUCTION 

For data storage systems in general, and for Holographic 

Data Storage Systems (HDSS) in particular, efficient 

equalization and detection techniques have proved to be 

immensely useful [1] for reducing the raw Bit Error Rates 

(BERs). Their goal is to improve the storage density by 

mitigating the effects of intersymbol interference (ISI) and 

noise. Equalization is one means for compensating or 

reducing the ISI in the system. Data detection refers to the 

method of converting retrieved analog values (e.g., from 

the output camera in a HDSS) to bits (i.e., 1s and 0s).  

Nonlinearity in the holographic data storage channel 

is evident from the fact that the camera in the output plane 

detects the light intensity, which is the magnitude squared 

of the light amplitude which is linearly related to the input 

page [2]. Nonlinear equalization and detection schemes 

may thus offer benefits for HDSS. An important aspect of 

the holographic data storage system is that the 2-D Fourier 

transforms (FTs) of the input pages get stored in the 

medium. To reduce the amount of storage medium used 

for storing the data, apertures are placed in the frequency 

plane. Decreasing the frequency plane aperture size leads 

to an increase in the areal density, but at the expense of 

increased ISI in the output camera plane since smaller 

frequency plane apertures result in broader impulse 

responses (called point spread functions in 2-D). Other 

impairments such as non-full fill factor of the input plane 

pixels and the output camera pixels, finite contrast ratio 

(i.e., the input pixel representing bit 0 really does not have 

zero light amplitude) and non-uniformity of the input 

pixel array, optical and electronic noise, cause increase in 

the BER of the channel.

Support Vector Machine (SVM) technique, a popular 

pattern recognition method, was recently proposed as a 

method for performing nonlinear equalization in 

communication systems [3]. This idea is adapted and 

investigated for HDSS in this paper. We also investigate 

the benefits of using the Linear Minimum Mean Squared 

Error (LMMSE) equalization as an aid to SVM. 

The rest of this paper is organized as follows. In 

Section 2, the formulation of SVM for data detection is 

discussed. Section 3 addresses the use of LMMSE 

equalization prior to SVM for detection. Section 4 

provides the results obtained using SVM for data 

detection, LMMSE equalization followed by SVM 

detection and some observations about the choice of SVM 

kernel function and size. Finally, our conclusions are 

presented in Section 5. 

2. SVM FOR DATA DETECTION 

Equalization and detection together can be viewed as a 

pattern classification problem [3, 4]. In essence, we are 

converting analog samples or sample sequences to bits or 

bit sequences. Translating this to 2-D holographically 

stored data pages, contiguous pixel areas of size n×n in 

the data page are treated as vectors in the pattern space to 

be classified. It is a mapping of n2-sized vectors to bit 0 or 

1. The size of the pixel neighborhood chosen depends on 

the expected amount of ISI in the system. A two-step 

procedure of equalization and detection, shown in Fig. 1a, 

effectively reduces to a one-step pattern classification 

problem shown in Fig. 1b. The intermediate analog values 

of equalization are not of consequence since they will be 

converted to bits eventually and thus in most cases the 

latter method is sufficient Moreover, nonlinear 

equalization often becomes unmanageably complex and 

computationally intensive. 
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Some techniques for nonlinear equalization are 

Volterra filters [5] and neural networks [4]. We apply

SVM to data detection [3]. The effectiveness of applying

SVM to a pattern classification problem involving large

datasets has been demonstrated in literature [6].

Fig. 1. (a) Two-step channel equalization and detection and

(b) Single-step detection by a pattern classifier.

2.1. SVM detection formulation

The main idea behind SVM is to separate classes with a 

decision surface that maximizes the margin between them

[7]. Different generalization bounds exist motivating

different algorithms, e.g., optimizing the maximal margin,

the margin distribution, the number of support vectors etc.

The most common one aims at training a SVM to obtain

the maximum margin classifier and this can be shown to

be equivalent to the problem of minimizing the norm of 

the weight vector.

The training and testing datasets used and the SVM

formulation pertaining to our application is described in

this section. InPhase Technologies provided the data

pages we use in experiments. It consists of 60 binary input

pages of size 1024x1280 pixels and their corresponding

real holographically stored and retrieved pages. Pages 1

through 60 were recorded in the same order in time, with

page 1 being the first page recorded and page 60 the last

one. Page 60 is used as the training data page to determine

the SVM decision function parameters because it is the

last page recorded, hence unlike the other pages it has no

or very little erasure [1]. The remaining 59 pages were 

tested using the decision boundaries determined from the

training page. These pages are processed block wise, i.e.,

the data page is divided into blocks of size 64×64 and 

each block is processed independently. This is because the 

channel response is not spatially stationary. Due to the

nature of optics of the system, there is more ISI at the

edges of the field of view than in the center.

A decision function f (x) needs to be determined for 

each of these blocks in the page. The known example set

(x1, y1), (x2, y2), …, (xn, yn) from each block in the 

training data page is used to determine this function,

where  is a set of abstract parameters, xi is the n×n pixel

neighborhood of each pixel in the ith block of the real

retrieved data page and yi is the corresponding true bit (0 

or 1). For linearly separable training samples, there exists

a pair (w, b) such that:

  (1) 
0y1b.

1y1b.

ii

ii

xw

xw

Given an input vector x an SVM classifies it according to

.                  (2)b).sign()(b, xwxwf

The hyperplane (w, b) that solves the optimization

problem with constraints for normalized weight vector w,

additional set of variables that measure the amount of

violation of constraints for a non-separable linear SVM

case and extension to nonlinear decision surfaces and 

kernel functions used for them are described in [7].

3. LMMSE EQUALIZATION AND SVM BASED 

DETECTION

Unlike many conventional storage channels, the HDSS 

channel is inherently nonlinear because the output camera

detects intensity. Linear Minimum Mean Squared Error

(LMMSE) equalization is established to be a practical

solution [8] for HDSS. In this paper we combine LMMSE

equalization and SVM-based detection and show that this

linear equalization in fact aids the detection process.

Fig. 2. Nonlinear channel and equalizer model 

A schematic of the nonlinear channel model of HDSS

and the role of the equalizer is shown in Fig. 2. The

analog outputs û(x, y) are the LMMSE equalized values.

They are the inputs to the SVM detector. In Section 4, we

show that LMMSE, which minimizes the mean squared 

error between the channel output c(x, y) and the input a(x,

y), complements the linear SVM; which minimizes the

norm of the weight vector w, effectively increasing the 

margin of separation between the two classes (i.e., 0s and

1s).

4. RESULTS AND DISCUSSION 

In this section, we present our results for data detection on 

real data pages using SVM. Section 4.1 compares the

BER with SVM detection compared to the threshold

detection.  In section 4.2 results using LMMSE
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equalization prior to SVM is presented. Finally, choice of

SVM kernel type and the required kernel size for our

dataset from InPhase Technologies is discussed in Section

4.3. A simple choice of linear SVM of size 3×3 combined

with LMMSE equalization using a 3×3 kernel and a bias

constant K is seen to be sufficient. 

4.1. Performance of SVM for detection 

The SVM decision boundaries for each block of size 

64×64 segmented from a data page are determined using

the training page 60. These boundaries are used in the test

pages 1 through 59 to make decisions of bit 0 or 1. 

Similarly, the thresholds to obtain the best BER in each of 

these blocks of the training page are determined and

utilized in the test pages. For this test, a linear SVM of

kernel size 3×3 was used. Some additional SVM

parameters were assigned specific values for all the 

simulations. Cost of constraints violation C, in non-

separable linear SVM case is chosen to be 1. Choice of 

this parameter is a current research area. Another 

assumption is that we use linear violation in the

constraints for the non-separable case.

Fig. 3. Performance of linear SVM versus threshold detection 

SVM performs slightly better than threshold detection

on the real read back pages 30 to 60 and for the rest of the

pages, the BER is similar to threshold detection. This is 

illustrated is Fig. 3. In the training page 60, the BER using

threshold detection is 0.0525 and using linear SVM it is

0.0502. BER reduced by about 4.4% by using SVM rather

than the threshold detection. In the test pages, use of SVM

reduced the error rate by about 10.5% in page 59 and

increased by 5% in page 4.

Computing the SVM decision boundaries from the

training data requires about 3.2 seconds compared to the

0.08 seconds to determine the best threshold, for a block

size of 64×64 pixels in training data page on our computer

setup using Matlab 6.5 on a Dell Dimension 4600 Series,

Intel Pentium 4 Processor at 3.4 GHz and 1024 MB DDR

SDRAM at 333MHz. However, for SVM detection for the

test pages that use the boundaries determined from the

training page, the number of seconds required for a 64×64

pixel block is 1.08. So, clearly using the SVM involves

more computational complexity.

4.2. LMMSE equalization prior to SVM detection 

The real retrieved page is equalized using LMMSE

equalizer prior to applying SVM detection on it.

Essentially the raw page is equalized using a set of filter 

coefficients and a bias constant derived based on the

minimum mean squared error criterion between them and

the input binary pattern (see Fig. 2) [8]. We use a filter 

size of 3×3. In these pages there is very little ISI and

hence bigger size filters are not necessary. Hence, there 

are 10 parameters determined from the LMMSE

equalization that essentially invert the effect of the linear

ISI in the channel.

Linear SVM is applied to these equalized pages and

the BER obtained is compared to the BERs obtained using

the LMMSE equalization and the threshold detection

combination. The results for both are shown in Fig. 4.

Fig. 4. Performance of LMMSE equalization prior to linear 

SVM/ threshold detection 

Threshold

detection

Linear SVM 

Training page 60 0.0460 0.0436

Test page 59 0.0542 0.0509

Test page 4 0.0681 0.0662

Table 1. Comparison of linear SVM and threshold detection on 

LMMSE equalized pages 

LMMSE equalization in itself reduces the BER for

both SVM and threshold detection by about 13% and 12% 

(in training page 60) respectively over that of the

detection without LMMSE equalization. Detection using

linear SVM in particular seems to have produced a greater

advantage from LMMSE equalization (17% reduction in

BER in the training page 60, 17.5% in test page 59 and

12.7% in test page 4). 

Comparison between the BER using linear SVM and

threshold detection on LMMSE equalized pages is shown 
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in Table 1. BER using linear SVM on LMMSE equalized

pages is about 0.0436 in the training page 60 which is

slightly less than 0.0460, the BER using threshold

detection on the equalized pages.

4.3. Choice of SVM kernel type and size

The choice of kernel function is important for SVM

detection. There are several options available such as the 

Radial Basis Function (RBF), polynomials, the multilayer

perceptron etc. [7]. These were applied and evaluated for 

our problem. The results are shown in Table 2. 

RBF kernel function works best with the training

page. However, linear SVM offers better generalization 

capability and performs comparably to the other kernels

for the test pages. As seen in Table 2, linear SVM

performs quite similarly to the other kernels for the test 

pages 59 and 4. Similar observation can be made for the

rest of the test pages as well. 

Linear Polynomial

(Degree 2) 

Polynomial

(Degree 3) 

RBF

Training

page 60 

0.0436 0.0387 0.0343 0.0321

Test

page 59 

0.0509 0.0490 0.0520 0.0500

Test

page 4 

0.0662 0.0638 0.0656 0.0632

Table 2. Comparison of performance of different kernel 

functions for SVM detection on LMMSE equalized pages 

Suitable size of the SVM kernel also needs to be

determined. Based on the amount of ISI in the system, the

choice of the kernel size is made. BER for various kernel

sizes of linear SVM is shown in Table 3. We observe

from this table that there is no significant improvement in

the BER by using bigger kernel sizes of 5×5 and 7×7.

3×3 5×5 7×7

Training page 60 0.0436 0.0412 0.0394

Test page 59 0.0509 0.0497 0.0501

Test page 4 0.0662 0.0663 0.0666

Table 3. Comparison of kernel sizes for linear SVM on LMMSE 

equalized pages 

The amount of ISI in the system can be visualized by

observing the 3×3 LMMSE and SVM correlation kernels.

A 3-D bar plot of these correlation kernels is in Fig. 5.

Linear SVM kernel for the raw data is seen in Fig. 5a. It is 

evident that there is very little ISI in the system. The

LMMSE kernel for the raw pages and the SVM kernel for

the LMMSE equalized pages are seen in Figs. 5b and c.

They reflect the same observation. 

 (a)                                (b)                                (c) 

Fig. 5. (a) 3×3 SVM kernel for raw data, (b) 3×3 LMMSE kernel 

for raw data, (c) 3×3 SVM kernel for LMMSE equalized data 

5. CONCLUSIONS 

Some useful inferences can be drawn from our

investigation of the 60 input binary pages and their real

retrieved pages provided by InPhase Technologies. It is

evident from the simulations that the BER using SVM for

data detection on LMMSE equalized pages is about 17%

better than simple threshold detection on the raw pages. 

Among the different SVM kernel functions tested we

observed that a simple choice of linear SVM of size 3×3 

is sufficient for this problem.
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