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ABSTRACT

Current enhanced sensitivity GPS receivers developed for
moderate indoor reception increase the observation period
with noncoherent integration of the envelopes of coherently
integrated predetection samples. This paper analyzes a novel
method, differential correlation, where each current coher-
ently integrated predetection sample is multiplied with the
complex conjugate of the previous predetection sample. The
products are then accumulated. The deterministic signal and
stochastic noise components with their probability density
functions and moments are derived algebraically for differ-
ential correlation and conventional noncoherent integration,
while also considering signal and implementation nonideal-
ities. The paper shows that differential correlation can offer
an average sensitivity gain over conventional noncoherent
integration of around 1.5 dB.

1. INTRODUCTION

Enhanced sensitivity GPS and future Galileo receivers need
to extend the observation period for spreading code syn-
chronization up to one second or more. The data bit stream
is thereby provided through assistance information on a mo-
bile communications channel. The target is to synchronize
the local reference codes with the received spreading codes
of several satellites in order to calculate the propagation de-
lays for position determination. The satellite signals are
very weak with just -158 dBW in outdoor line-of-sight prop-
agation. The maximal coherent integration period is limited
by the coherence time of the propagation channel, oscilla-
tor accuracy, and size of the frequency search bins. The
conventional approach is therefore to continue with nonco-
herent integration of squared predetection envelopes. The
novel alternative approach presented in this paper is to pro-
ceed with differentially coherent integration instead.

2. COHERENT PREDETECTION

The received Galileo/GPS signal can be expressed in its
complex-valued, low-pass equivalent form as

rlp(t) =
√

2Cd(t)c(t)ejφ(t) + n(t), (1)

where C denotes the carrier power, d(t) the data modula-
tion, c(t) the received spreading code, φ(t) the signal phase,
and n(t) complex-valued, zero-mean, white Gaussian noise
with variance

σ2
n = 2E

{�{n}2
}

= 2E
{�{n}2

}
= 2N0BF. (2)

N0 = 1.38 · 10−23J/◦K · 290◦K denotes the thermal noise
power spectral density, F the receiver noise figure, and
B = 1/Ts the bandwidth of the anti-aliasing filter for the
sample period Ts.

Despreading with the local PRN reference code cr,ν and
coherent integration of L = Ti/Ts chips, with Ti the coher-
ent integration time and N the code sequence period, yields

sµ =
√

2C

L∑
ν=1

[
dνcνc∗r,ν+τ mod Nejφν + c∗r,ν+τ mod N

]
.

(3)
For sufficiently small average frequency deviations ∆fµ dur-
ing an interval [(µ − 1)Ti, µTi], the approximation

ejφν ≈ 1
Ti

∫ Ti

0

ej(2π∆fµt+ϕµ) dt

= ej(π∆fµTi+ϕµ)sinc (∆fµTi) ,

(4)

ϕµ = ϕµ−1 + 2π∆fµ−1Ti, (5)

and constant dν during [(µ − 1)Ti, µTi] results in [4]

sµ ≈ yµ + wµ, (6)

yµ =
√

2CdµRrc(τ)sinc (∆fµTi) ej(π∆fµTi+ϕµ), (7)

Rrc(τ) =
L∑

ν=1

cνc∗r,ν+τ mod N . (8)

wµ = wQ,µ + jwI,µ denotes complex-valued, zero-mean,
white Gaussian noise with variance

σ2
w = 2E

{
w2

I

}
= 2E

{
w2

Q

}
=

L2

Ti
2N0F. (9)
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Fig. 1. Galileo/GPS receiver channel deploying differential correlation.

3. DIFFERENTIAL CORRELATION

Differential correlation multiplies each current predetection
sample with the complex conjugate of the previous prede-
tection sample, accumulates these products, and takes the
squared envelope at the very end, leading to the test statistic

ΛD =

∣∣∣∣∣
M∑

µ=1

sµs∗µ−1

∣∣∣∣∣
2

�
∣∣∣∣∣

M∑
µ=1

(aµ + gµ + hµ + vµ)

∣∣∣∣∣
2

,

(10)
aµ = 2Cdµdµ−1R

2
rc(τ)sinc (∆fµTc)

· sinc (∆fµ−1Ti) ej[π(∆fµ−∆fµ−1)Tc+ϕµ−ϕµ−1],
(11)

gµ = yµ(wI,µ−1 − jwQ,µ−1), (12)

hµ = y∗
µ−1(wI,µ + jwQ,µ), (13)

vµ = wI,µwI,µ−1 + wQ,µwQ,µ−1

+ j(wQ,µwI,µ−1 − wI,µwQ,µ−1).
(14)

The accumulation of the zero-mean complex Gaussian noise

M∑
µ=1

(gµ + hµ) � θ =

M∑
µ=0

(�{yµ+1 + yµ−1}wI,µ + �{yµ+1 + yµ−1}wQ,µ)

+ j
M∑

µ=0

(�{yµ+1 − yµ−1}wI,µ + �{yµ−1 − yµ+1}wQ,µ)

(15)
yields another zero-mean complex Gaussian variable θ with

E
{
�{θ}2

}
=

σ2
w

2

M∑
µ=0

|yµ+1 + yµ−1|2 , (16)

E
{
�{θ}2

}
=

σ2
w

2

M∑
µ=0

|yµ+1 − yµ−1|2 , (17)

y−1 = yM+1 = 0. (18)

The product of two zero-mean, statistically independent,
normally distributed random variables

w{I or Q},µw{I or Q},µ−1 � uµ (19)

obeys the normal product distribution [6]

pu(u) =
K0

(
|u|
σ2

w

)
πσ2

w

, (20)

where Kn(x) is the modified Bessel function of second kind
and order n. By applying [1]∫ ∞

0

tµKν(t) dt = 2µ−1Γ
(

µ + ν + 1
2

)
Γ
(

µ − ν + 1
2

)
,

(21)
where Γ(x) denotes the Gamma function, the variance of
the resulting zero-mean normal product distribution is

σ2
u = E{u2} =

∫ ∞

−∞
u2pu(u) du

= 2
∫ ∞

0

σ2
w

2π
t2K0(t)

σ2
w

2
dt =

σ4
w

π
Γ2

(
3
2

)
=

σ4
w

4
.

(22)
The accumulation of the complex-valued, normal product
distributed noise vµ can be rewritten as

M∑
µ=1

vµ =
M/2∑
µ=1

[
wI,2µ−1wI,2µ−2 + wQ,2µ−1wQ,2µ−2

+ j(wQ,2µ−1wI,2µ−2 − wI,2µ−1wQ,2µ−2)
]

+
M/2∑
µ=1

[
wI,2µwI,2µ−1 + wQ,2µwQ,2µ−1

+ j(wQ,2µwI,2µ−1 − wI,2µwQ,2µ−1)
]

� ϑ ,

(23)
such that there are eight accumulations of statistically inde-
pendent variables. With the central limit theorem, for suffi-
ciently large M , all eight accumulations converge to uncor-
related, zero-mean, Gaussian distributed variables with

E

⎧⎪⎨
⎪⎩
⎛
⎝M/2∑

µ=1

u2µ

⎞
⎠

2
⎫⎪⎬
⎪⎭ = E

⎧⎪⎨
⎪⎩
⎛
⎝M/2∑

µ=1

u2µ−1

⎞
⎠

2
⎫⎪⎬
⎪⎭ =

M

8
σ4

w .

(24)
Combining the eight independent variables leads, for suf-
ficiently large M , to complex, zero-mean, white Gaussian
noise ϑ with variance

σ2
ϑ = 2E

{�{ϑ}2
}

= 2E
{�{ϑ}2

}
= Mσ4

w. (25)
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Fig. 2. Comparison of the normal product sum distribution
pϑI(ϑI) versus the corresponding Gaussian distribution for
a small M = 9.

Simulations, such as the one presented in Fig. 2, have shown
that for M = 9 the accumulated variable already converges
to a Gaussian distribution with a high degree of accuracy.

4. DIFFERENTIAL CORRELATION RESULT

Combining all results for the differential correlation

ΛD =

∣∣∣∣∣
M∑

µ=1

sµs∗µ−1

∣∣∣∣∣
2

� |ΨD|2 (26)

leads, for sufficiently large M , to a complex Gaussian vari-
able ΨD with mean value

mΨ =E {ΨD} = 2CR2
rc(τ)

M∑
µ=1

[
dµdµ−1sinc (∆fµTc)

· sinc (∆fµ−1Ti) ej[π(∆fµ−∆fµ−1)Tc+ϕµ−ϕµ−1]
]

(27)
and variances

σ2
Ψ,I = E

{�{ΨD − mΨ}2
}

= M
σ4

w

2
+

σ2
w

2

M∑
µ=0

|yµ+1 + yµ−1|2 ,
(28)

σ2
Ψ,Q = E

{�{ΨD − mΨ}2
}

= M
σ4

w

2
+

σ2
w

2

M∑
µ=0

|yµ+1 − yµ−1|2 ,
(29)

where yµ and σ2
w are defined in (7) and (9) respectively.

For a stable frequency deviation, the differential correlation
delivers signal components that are all in phase to each other

ϕµ − ϕµ−1

∣∣∣∣∣
∆f=const.

= 2π∆fTi = const., (30)

mΨ

∣∣∣∣∣
∆f=const.

= 2CR2
rc(τ)sinc2 (∆fTi)

· ej2π∆fTi

M∑
µ=1

dµdµ−1.

(31)

The test statistic for differential correlation, ΛD = |ΨD|2
is the sum of two statistically independent non-central Chi-
squared distributions with different variances, leading to the
probability density [5]

pΛD(Λ) =
1

2σ2
Ψ,Q

√
Λ

mD
exp

(
−�{mΨ}

2σ2
Ψ,I

− �{mΨ}
2σ2

Ψ,Q

)

· exp

(
− Λ

2σ2
Ψ,I

) ∞∑
k=0

∞∑
m=0

[
Γ(1 + k + m)
k!m!Γ(1 + m)

·
(√

Λ�{mΨ}2σ2
Ψ,I

2�{mΨ}σ4
Ψ,Q

)m (√
Λ(σ2

Ψ,Q − σ2
Ψ,I)

�{mΨ}σ2
Ψ,Q

)k

· I1+k+m

(√
Λ�{mΨ}
{σ2

Ψ,I}

)]
,

(32)
where Γ(x) denotes the Gamma function and In(x) the mod-
ified Bessel function of first kind and order n.

5. CONVENTIONAL NONCOHERENT
INTEGRATION RESULT

Current enhanced sensitivity GPS receivers usually take the
squared envelope of the predetection samples sµ after co-
herent integration and accumulate the envelopes

ΛS =
M∑

µ=0

|sµ|2. (33)

The probability density of ΛS is therefore a non-central Chi-
squared distribution [2]

pΛS(Λ) =
1

σ2
w

(
Λ
γ2
S

)M
2

exp
(
−Λ + γ2

S

σ2
w

)
IM

(
2
√

Λγ2
S

σ2
w

)
(34)

with 2M + 2 degrees of freedom and the noncentrality pa-
rameter

γ2
S =

M∑
µ=0

|msµ
|2 = 2CR2

rc(τ)
M∑

µ=0

sinc2
(
∆fµTi

)
. (35)

A detailed analysis of conventional noncoherent integration
for Galileo and GPS, including multipath fading scenarios
is provided in [4].
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Fig. 3. Probabilities of detection for differential correlation and conventional noncoherent integration, where M = 99,
Pf = 10−3, Rrc(0) = L, Rrc(τ �= 0) = L · 10−1.08 (according to [3]), C/N0|estimated = 2C/N0|real, and F = 3dB.

6. SYNCHRONIZATION DETECTION

The detector is based on the Neyman-Pearson criterion,
which maximizes the probability of detection Pd for a given
probability of false alarm Pf . The threshold κ is therefore
calculated for a fixed probability of false alarm

Pf =
∫ ∞

κ

pΛ|H0 (Λ|H0) dΛ (36)

using hypothesis H0. Cross-correlation Rrc(τ �= 0) plus
noise w is present for H0, whereas the correlation peak
Rrc(0) plus noise w is present for hypothesis H1. κ is then
utilized to test ΛD and ΛS for synchronization of the local
reference code cr,ν with the received spreading code cν

Λ
H1

�
H0

κ. (37)

The resulting probabilities of detection

Pd =
∫ ∞

κ

pΛ|H1 (Λ|H1) dΛ (38)

for hypothesis H1 are presented in Fig. 3, where it can be
observed that the acquisition threshold for differential cor-
relation is in average around 1.5 dB better than the one for
conventional noncoherent integration. The data bit stream
dµ is provided through assistance data on a mobile commu-
nications channel and therefore known a-priori. Enhanced
sensitivity reception requires an implicit estimation of
C/N0, for which an estimation error of 3 dB is assumed,
such that C/N0|estimated = 2C/N0|real.

7. CONCLUSION

Differential correlation can provide a sensitivity gain over
conventional noncoherent integration that depends on the

respective scenario and averages around 1.5 dB. This was
confirmed through simulations with a wide variety of pa-
rameter sets, including time-variant frequency deviations.

All deterministic and stochastic signal components with
their probability density functions and moments have been
derived algebraically after (a) down-conversion to baseband,
(b) despreading and coherent integration, (c) differential
correlation, (d) differentially coherent accumulation,
(e) squared envelope of differentially coherent accumula-
tion, and (f) conventional noncoherent integration. Nonide-
alities in the receiver and signal structure are incorporated.
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