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ABSTRACT

A new subspace-based blind algorithm for signature waveform
estimation in direct-sequence code division multiple-access (DS-
CDMA) systems is proposed. Our technique represents a gener-
alization of the popular technique by Liu and Xu and additionally
exploits non-circularity of the transmitted signals and circularity
of noise to increase the dimension of the observation space twice
while keeping the dimension of the signal subspace unchanged.
This leads to a substantially improved performance of the pro-
posed algorithm and enables to apply it to scenarios with larger
numbers of active users and lengthier user channels as compared
to the original algorithm by Liu and Xu.

1. INTRODUCTION

One of the most challenging problems in multiuser detection in
DS-CDMA systems is the problem of unknown signature wave-
form mismatch. Such a mismatch may be caused by a distortion
of the signature waveform of the user-of-interest by frequency-
selective fading effects. As a mismatched signature waveform can
lead to a severe degradation of the performance of multiuser de-
tectors [1]-[2], signature waveform estimation at the receiver side
is an important prerequisite of any multiuser detection procedure.
Signature waveform estimation techniques can be classified into
training-based and blind groups of methods. Because of a limited
bandwidth efficiency of the training-based techniques [1], blind al-
gorithms have attracted recently a considerable attention. Among
latter algorithms, subspace-based methods [1], [3]-[5] represent a
promising trend. Although blind subspace-based signature wave-
form estimation techniques have an obvious potential to provide
excellent estimation accuracy, certain practical hurdles may make
them inapplicable to real-world environments. For instance, these
techniques are only applicable to underloaded systems, i.e., the
systems where the number of active users is less than the dimen-
sion of the observation space [3]-[4]. Another limitation emerges
from the fact that usually the problem of signature waveform es-
timation boils down to a channel identification problem [1], [3]-
[5]. Since all of blind subspace-based methods implicitly [1], [3]
or explicitly [4]-[5] pose some restrictions on the length of the
channel, their reliability in a long-delay multipath environment is
questionable. The main contribution of this paper is to propose an
enhanced version of one popular subspace-based signature wave-
form estimation technique which, as compared to its conventional
counterpart, is capable to identify lengthier channels in more heav-
ily loaded environments.

While the idea of our technique can be easily adapted to mod-
ify any other subspace-based method, we develop it based on the

popular algorithm by Liu and Xu [4] which is hereafter called the
LX algorithm. To develop our approach, it is assumed that all
transmitted symbols are drawn from the BPSK constellation and
the ambient noise is a white and circular process [6]-[7]. Borrow-
ing the idea which has been earlier successfully applied in array
processing [7], we exploit the noise circularity property jointly
with the non-circular property of the transmitted signals to dou-
ble the dimension of the observation space without affecting the
dimension of the signal subspace. Using the so-obtained extended
observation space, the proposed algorithm is shown to facilitate
identification of lengthier channels in more heavily loaded envi-
ronments than the LX algorithm. As the developed extended model
provides more equations to estimate the sampled channel impulse
response, the proposed technique is shown to substantially out-
perform the LX algorithm when both algorithms are implemented
using the least-squares (LS) method. We also provide a sufficient
condition for channel identifiability of the proposed algorithm and
show that any channel which could be identified using the LX al-
gorithm is also identifiable by our technique.

2. SIGNAL MODEL

Let us consider a K-user synchronous DS-CDMA system1. The
continuous-time baseband received signal can be modeled as

x(t) =

∞∑
m=−∞

K∑
k=1

Akbk(m)wk(t − mTs) + v(t) (1)

where Ts is the symbol period, Ak is the amplitude of the received
signal of the kth user, bk(m) ∈ {−1, +1} is the mth transmitted
data symbol of the kth user, wk(t) is the signature waveform of
the kth user, and v(t) is additive zero-mean circular white noise
with variance σ2.

Assuming that the spreading code is short (i.e., the chip se-
quence period is the same as the symbol period) and that the user
channel impulse responses are qiasi-static (i.e., fixed during the
observation period), the signature waveform of the kth user can be
written as [4]

wk(t) =

Lc∑
l=1

ck[l]hk

(
t − lTc

)
(2)

where ck �
[
ck[1], ck[2], . . . , ck[Lc]

]T
is the spreading code vec-

tor of the kth user, hk(t) is the channel impulse response of the kth
user, Lc is the spreading factor, Tc = Ts/Lc is the chip period,
and (·)T stands for the transpose.

1The extension to the asynchronous case is direct [8].
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Let hk(t) have a finite support of [0, αkTc], where L − 1 ≤
max{α1, . . . , αK} < L and L is a positive integer. We assume
that the maximum duration of the channel impulse response is
shorter than the symbol period Ts, so that at least some part of
the received signal is not contaminated by intersymbol interfer-
ence (ISI)2. Sampling (1) at the interval corresponding to the nth
transmitted symbol with the period of Tc and ignoring the first
L− 1 samples contaminated by ISI, the (Lc −L+1)× 1 ISI-free
received sampled data vector can be expressed as [4]

x(n) =
K∑

k=1

Akbk(n)wk + v(n) (3)

where x(n) � [x(nTs +LTc), x(nTs +(L+1)Tc), . . . , x(nTs +

LcTc)]
T , wk � [wk(LTc), wk((L + 1)Tc), . . . , wk(LcTc)]

T ,
and v(n) � [v(nTs + LTc), v(nTs + (L + 1)Tc), . . . , v(nTs +
LcTc)]

T . Using (2), the vector wk can be written as

wk =

⎡
⎢⎢⎢⎣

ck[L] . . . ck[1]
ck[L + 1] . . . ck[2]

...
. . .

...
ck[Lc] . . . ck[Lc − L + 1]

⎤
⎥⎥⎥⎦ hk � Ckhk

(4)
where hk � [hk(0), hk(Tc), · · · , hk((L − 1)Tc)]

T . As the spre-
ading code of the desired user is known at the receiver, if the chan-
nel vector hk is estimated, then wk can be directly obtained from
(4). Thus, throughout this paper we consider the problem of chan-
nel vector rather than signature waveform vector estimation. With-
out any loss of generality, let us assume that ‖hk‖ = 1, i.e., the
norm of hk is absorbed in the corresponding amplitude Ak. Then,
we can rewrite (3) in a compact form as

x(n) = Wb(n) + v(n) (5)

where W = [A1w1, A2w2, . . . , AKwK ], and b(n) = [b1(n),
b2(n), . . . , bK(n)]T .

3. BLIND SIGNATURE WAVEFORM ESTIMATION

First, let us briefly overview the LX algorithm of [4]. From (5),
we have that the received data correlation matrix R is given by

R � E{x(n)x(n)H} = WW
H + σ2

I. (6)

The matrix (6) can be eigendecomposed as

R = UsΛsU
H

s + σ2
UnU

H

n (7)

where the Λs = diag(λ1 + σ2, . . . , λK + σ2) contains the K
largest (signal-subspace) eigenvalues of R, Us contains the corre-
sponding eigenvectors, and the (Lc−L+1)×(Lc−L−K+1) ma-
trix Un contains the noise-subspace eigenvectors of R associated
with its minimal eigenvalue σ2. Without any loss of generality, let
us assume that the channel vector that has to be estimated is h1.
As range(W) = range(Us), we have UH

n w1 = UH

n C1h1 = 0.
Hence, h1 is a nontrivial solution of the following equation:

U
H

n C1h = 0. (8)

2Maximal admissible duration of the channel impulse response will be
discussed in Section 3.

It has been shown in [4] that if a certain identifiability condition is
satisfied, then this solution is unique up to a scaling factor. There-
fore, in such case h1 can be uniquely identified from (8). In prac-
tice, only the sample correlation matrix R̂ is available, and (8)
should be solved in the LS sense. Details of implementation of the
LX algorithm can be found in [4] and, hence, are omitted here.

As (8) is a set of Lc − L − K + 1 complex equations and L
complex unknowns, uniqueness of its nontrivial solution requires
that

2L + K ≤ Lc + 1. (9)

It can be observed that (9) severely restricts both the maximum
channel order L and the number of active users K. To circumvent
this impairment, let us take into account that all the transmitted
symbols are drawn from the BPSK constellation, and, therefore,
they are non-circular, whereas the noise is assumed to be circular.
Using the latter fact, we have [6]

E{v(n)v(n)T } = 0. (10)

Introducing the 2(Lc −L + 1)× 1 extended received data vectors
x̄(n) � [xT (n)xH(n)]T , we have

x̄(n) =

[
W

W∗

]
b(n) +

[
v(n)
v∗(n)

]
(11)

where (·)∗ stands for the complex conjugate. Using (10) along
with (11), we obtain

R̄ = E{x̄(n)x̄H(n)} =

[
W

W∗

] [
W

W∗

]H

+ σ2
I. (12)

The eigendecomposition of R̄ can be written as

R̄ = ŪsΛ̄sŪ
H

s + σ2
ŪnŪ

H

n (13)

where Λ̄s = diag(λ̄1 + σ2, . . . , λ̄K + σ2) contains the K largest
(signal-subspace) eigenvalues of R̄, the 2(Lc−L+1)×K matrix
Ūs contains the corresponding eigenvectors, and the 2(Lc − L +
1)× (2(Lc −L+1)−K) matrix Ūn contains the noise-subspace
eigenvectors of R̄ associated with its minimal eigenvalue σ2.

Using x̄ instead of x, the dimension of the observation space
is increased twice, while the dimension of the signal subspace re-

mains unchanged. Since range(Ūs) = range

([
W

W∗

])
and

Ūn is the orthogonal complement of Ūs, we have

Ū
H

n

[
w1

w∗

1

]
= Ū

H

n

[
C1h1

C∗

1h
∗

1

]
= 0. (14)

Denoting the matrix which contains the first Lc − L + 1 rows
of Ūn as Ūn1

, and the matrix which contains the remaining last
Lc − L + 1 rows of Ūn as Ūn2

, we find from (14) that

Ū
H

n1
C1h1 + Ū

H

n2
C

∗

1h
∗

1 = 0. (15)

To solve (15) for h1, let T1 � ŪH

n1
C1 and T2 � ŪH

n2
C∗

1. Then,
(15) can be rewritten in the following equivalent form[

Re(T1) + Re(T2) Im(T2) − Im(T1)
Im(T1) + Im(T2) Re(T1) − Re(T2)

] [
Re(h1)
Im(h1)

]
= 0

(16)
where Re(·) and Im(·) stand for the real and the imaginary parts,
respectively. As an alternative of using the LX algorithm, we pro-
pose to use (16) for signature waveform estimation. In the finite
sample case, our algorithm can be summarized as the follows:
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1. Find the sample estimate ˆ̄R = 1

N

∑
N

k=1
x̄(k)x̄H(k) of the

correlation matrix R̄.

2. Compute the eigendecomposition of ˆ̄R in the form

ˆ̄R = ˆ̄Us
ˆ̄Λs

ˆ̄UH

s + ˆ̄Un
ˆ̄Λn

ˆ̄UH

n (17)

where the matrices ˆ̄Us, ˆ̄Λs and ˆ̄Un are the finite-sample
estimates of the matrices Ūs, Λ̄s and Ūn, respectively, and
ˆ̄Λn is the (2(Lc − L + 1) − K) × (2(Lc − L + 1) − K)

matrix of the noise-subspace eigenvalues of ˆ̄R.

3. Using the first and the last (Lc−L+1) rows of ˆ̄Un, obtain

the matrices ˆ̄Un1
and ˆ̄Un2

which are the finite-sample esti-
mates of the matrices Ūn1

and Ūn2
, respectively. Compute

T̂1 = ˆ̄UH

n1
C1 and T̂2 = ˆ̄UH

n2
C∗

1 .

4. Compute the matrix

Ψ =

[
Re(T̂1) + Re(T̂2) Im(T̂2) − Im(T̂1)

Im(T̂1) + Im(T̂2) Re(T̂1) − Re(T̂2)

]
.

(18)
and find the 2L × 1 minor eigenvector of ΨHΨ, i.e., the
eigenvector associated with the smallest eigenvalue of this
matrix. Denote this eigenvector as s.

5. Estimate the channel vector h1 as

ĥ1 = s1 + js2 (19)

where s1 and s2 are the L×1 subvectors of s which contain
its first and last L entries, respectively.

The linear system in (16) contains 4(Lc − L + 1) − 2K real
equations and 2L real unknowns. To have a unique nontrivial so-
lution for (16), it is necessary that the number of unknowns is less
than or equal to the number of equations, that is,

3L + K ≤ 2Lc + 1. (20)

Comparing (20) with (9) and taking to account that Lc is typically
much larger than L, it can be observed that the proposed algorithm
has a substantially more relaxed condition on the maximal identi-
fiable channel length L and the number of active users K. Also,
from the fact that the number of real equations is increased in the
proposed algorithm from 2(Lc−L+1)−2K to 4(Lc−L+1)−2K
(while keeping the number of unknowns unchanged), it may be ex-
pected that the channel estimation accuracy of our algorithm will
be better than that of the LX technique.

4. SUFFICIENT IDENTIFIABILITY CONDITION

In this section, we prove that the proposed algorithm has a suffi-
cient identifiability condition which is identical to the necessary
and sufficient condition established in [4] for the LX algorithm.

Lemma 1: Assume that C1 is a full column-rank matrix. If

rank[range(C1) ∩ range(W)] = 1 (21)

then, up to an arbitrary scaling factor, the following equation has
its unique nontrivial solution equal to h1:

Ū
H

n1
C1h + Ū

H

n2
C

∗

1h
∗ = 0. (22)
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Figure 1: MSEs of the methods tested versus the number of users
K.

Proof: Proof is by contradiction. First, (22) can be rewritten
as

Ū
H

n

[
C1h

C∗

1h
∗

]
= 0. (23)

Using (14), we notice that (23) has at least one nontrivial solution
h = h1. Let us assume that (23) has another solution g �= αh1,
where α is an arbitrary scaling factor. This assumption yields[

C1g

C∗

1g
∗

]
∈ range

([
W

W∗

])
. (24)

From (24), it follows that there is some vector f such that[
C1g

C∗

1g
∗

]
=

[
W

W∗

]
f . (25)

Hence, we have C1g = Wf . On the other hand, we know that
C1h1 = w1 = We1/A1 where e1 � [1, 0, . . . , 0]T . Therefore,
we have

C1[g h1] = W[f e1/A1]. (26)

Since g and h1 are linearly independent and C1 is a full column-
rank matrix, (26) implies that rank[range(C1) ∩ range(W)] is
at least equal to 2, which contradicts to (21). This completes the
proof of Lemma 1. �

It is noteworthy that the sufficient identifiability condition (21)
coincides with the necessary and sufficient identifiability condi-
tion of the LX algorithm [4]. Therefore, any channel vector which
could be identified by the LX algorithm is also identifiable using
the proposed technique. Note that the reverse statement does not
necessarily hold true.

5. SIMULATION RESULTS

In all numerical examples, Lc = 40 and the spreading sequence
associated with each user has been randomly drawn from the bi-
nary set of {−1, +1} and then fixed throughout all examples. Sim-
ilarly, the entries of the channel vectors have been randomly and
independently drawn from a zero-mean complex Gaussian distri-
bution and then have been normalized so that ‖hk‖ = 1 (k =
1, . . . , K) and fixed throughout all examples. Throughout the sim-
ulations, we assume that all users have identical powers and N =
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Figure 2: MSEs of the methods tested versus the channel order L.

80 received data samples are available. All simulation curves are
averaged over 500 realizations of the transmitted symbols and noi-
se. In all figures, the Mean-Square-Error (MSE) of the channel
estimate associated with the first user is displayed.

Figure 1 shows the MSEs of LX algorithm and the proposed
technique versus the number of users K. In this figure, the chan-
nel length L = 8 is chosen. The signal-to-noise ratio (SNR) of
all users is assumed to be equal to 10 dB. Substituting the selected
values of Lc and L in (9), it can be concluded that the LX al-
gorithm cannot properly operate if the number of users is larger
than 25. This theoretical observation is fully validated by Figure
1. Note that, if K ≥ Lc − L + 1 = 33, then the dimension of the
noise subspace reduces to zero and it becomes impossible to use
the LX-algorithm. At the same time, as can be observed from this
figure, the proposed technique is able to identify the desired chan-
nel vector in a system with up to 50 active users. Also, even within
the operating range of the LX algorithm (K ≤ 25), this technique
is outperformed by the proposed algorithm. As mentioned before,
these performance improvements are due to the fact that the pro-
posed technique exploits more equations to estimate the channel
vector than the LX algorithm.

Figure 2 shows the MSEs of the both algorithms tested versus
the channel length L. In this figure, the number of users K = 25
is fixed and all user SNRs are equal to 10 dB. From (9), we con-
clude that using the LX algorithm, it is not possible to identify the
channel with L > 8. This theoretical observation is fully validated
by Figure 2. From this figure, we also see that the proposed al-
gorithm provides reliable estimates of the channel vector with the
length up to L = 14. Moreover, this algorithm outperforms the
LX technique for all values of L tested.

Figure 3 shows the MSEs of the both algorithms tested versus
the user SNR for L = 8 and K = 25. Similarly to the pre-
vious two figures, substantial performance improvements of the
proposed algorithm relative to the LX algorithm can be observed.

6. CONCLUSIONS

A new blind subspace-based algorithm for signature waveform es-
timation in DS-CDMA systems has been proposed. Our algorithm
uses the key idea of the popular LX technique [4], but addition-
ally exploits non-circularity of the transmitted signals and circu-
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Figure 3: MSEs of the methods tested versus the SNR.

larity of noise to increase the dimension of the observation space
twice with respect to the LX algorithm while keeping the dimen-
sion of the signal subspace unchanged. As a result, the proposed
technique has a substantially enhanced performance as compared
to the LX approach. Moreover, the proposed algorithm is appli-
cable to scenarios with an increased number of active users that
have lengthier channels as compared to the scenarios which can be
treated by the LX technique.
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