
FAST ADAPTIVE CHANNEL ESTIMATION ALGORITHMS FOR CDMA SYSTEMS

Amar A. Abd El-Sallam∗

Communication & Signal Processing Group (CSP)

Curtin University of Technology

Perth WA 6845, Australia

email: elsallam@ieee.org

Abdelhak M. Zoubir

Signal Processing Group (SPG)

Darmstadt University of Technology

Merckstrasse 25, D-64283 Darmstadt, Germany

email: zoubir@ieee.org

ABSTRACT

The paper presents adaptive blind channel estimation and tracking
algorithms for CDMA systems. Using only the spreading code of
the user of interest, three blind estimation algorithms are proposed
to estimate the channel response from the received data sequence.
The idea is based on Minimum Variance (MV) receivers. Simulation
results show that the proposed algorithms perform better than the
previously proposed algorithms, also they are less complex and have
a fast convergence rate.

1. INTRODUCTION

In Direct-Sequence CDMA communication systems, channel prop-
agation is considered as one of the major effects that limit system
performance. These effects can result in different signal distortion
such frequency selective or non-selective fading [1]. Compensation
of channel fading due to multipath propagation is possible through
use of correlators such as RAKE receivers that coherently process
multipath components. Each correlator or finger requires an estimate
of its path delay and attenuation.
There have been a number of channel estimation algorithms such as
training based algorithms, blind or semi-blind algorithms. In order
to reduce complexity, more attention is being paid to blind and semi-
bind channel estimation techniques over the training based ones. Also
the presence of multipath delays destroys the assumed orthogonality
between users’ spreading codes. As a result, the accuracy of training
based estimators is severely limited by the cross interference between
data and pilot symbols.
The goal of the paper is to derive some fast blind adaptive channel es-
timation algorithms. Then to use these algorithms to implement low
complexity receivers such as RAKE receivers for multiuser CDMA
systems. This will be achieved by employing constrained optimiza-
tion techniques based on MV receivers [2, 3]. We recursively mini-
mize the output variance of the received signal subject to some con-
straints which are also jointly updated. Three different algorithms are
proposed in this paper and compared with previously proposed algo-
rithms [2, 3, 4, 5, 6, 7].
The paper is organized as follows. In Sec. 2, we introduce the model
and assumptions. In Sec. 3, we discuss the MV receivers. In Sec. 4 we
review previously proposed blind channel estimation algorithms. In
Sec. 5 we present the new proposed algorithms. In Sec. 6 we present
simulation results and discussion before we conclude in Sec. 7.

∗This work was partially supported by the Australian Telecommunications
CRC.

2. DATA MODEL

Consider the base-band down-link received signal of a K users in a
BPSK DS-CDMA system,

y(n) =

K∑
k=1

yk(n) + v(n), (1)

where,
yk(n) =

∞∑
l=−∞

bk(l)sk(n − τk − lTs) (2)

is the k’th user received signal yk(n), bk(l) is the transmitted symbol,
Ts is the symbol duration, τk is the delay, and sk(n) is given by

sk(n) =
∞∑

m=−∞
gk(m)ck(n − mTc), (3)

where gk(n) is the channel response, ck(n) is the k’th user unit en-
ergy spreading code of length N and Tc = Ts

N
is the chip duration.

Let user k be the user of interest. Then,

y(n) = skbk(n) +
K∑

k′=1,k′ �=k

sk′bk′(n) + v(n), (4)

where for q different multipaths,
y(n) = [y(1) y(2) · · · y(N + q − 1)]T , sk = Ckgk

Ck =

⎡
⎢⎢⎢⎢⎢⎢⎣

ck(1) 0
...

. . . ck(1)

ck(N)
...

0
. . . ck(N)

⎤
⎥⎥⎥⎥⎥⎥⎦

(N+q−1)×q

, gk =

⎡
⎢⎢⎢⎣

gk(1)
gk(2)

...
gk(q)

⎤
⎥⎥⎥⎦

(q×1)

.

3. MINIMUM VARIANCE RECEIVERS

The idea of estimating the transmitted symbol bk(n) is to find a vector
f such that (N + q − 1)

b̂k(n) = fHy(n). (5)

For MV receivers [2, 3], it has been shown that the vector f can be
found by minimizing the variance of the zero mean output symbols
b̂k(n), i.e.,

ζ = E{||b̂k(n)||2} = fHRyf , Ry = E{y(n)yH(n)}. (6)

The minimization of ζ is subject to the constraint that the response of
the user of interest is constant, i.e.

fHCkgk = 1. (7)

Since the solution of Eqn. (7) includes a scaling factor and a phase
ambiguity in g, assuming that gHg = 1, Eqn. (7) becomes

CH
k f = gk. (8)
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3.1. Optimum Solution

Using Lagrange multipliers, it has been shown in [2] that for a given
channel response gk = g which is unknown with Toeplitz spreading
matrix Ck = C, the optimum solution to the vector f is

fopt = R−1
y C(CHR−1

y C)−1g, (9)

which leads to the minimum output variance,

ζopt = fH
optRyfopt = gH(CHR−1

y C)−1g. (10)

4. EXISTING ALGORITHMS

4.1. Adaptive LMS Algorithms

In [3, 4, 5], three very similar adaptive LMS algorithms are proposed
for the estimation of f and g. The first LMS algorithm is based on
the following cost function,

ζ1 = fHRyf+λH(CHf−g)+λ(fHC−gH)+ρ(gHg−1) (11)

The idea of estimating f and g using Eqn. (11) is to minimize ζ1 w.r.t
f and maximize it w.r.t g. First one initializes f and g with certain
values, then when a new symbol arrives at (n + 1), their values are
updated according to the LMS algorithm,

fn+1 = fn − µf∇ζ/f (12)

gn+1 = gn + µg∇ζ/g (13)

where ∇ζ/x is the partial gradient of ζ w.r.t the vector x, i.e. ∇ζ/x =
∂ζ
∂x

4.2. Adaptive RLS Algorithm

In [3, 8] an RLS algorithm is also used. The channel parameters g is
found as the eigenvector which corresponds to the minimum eigen-
value of the quadratic function CHR−1

y C. The main problem with
this method is the calculation of R−1

y where, a Kalman RLS recur-
sive algorithm is used. After initializing R−1

y (n − 1), the algorithm
proceeds as follows,

k(n) =
R̂−1

y (n − 1)y(n)

v + yH(n)R̂−1
y (n − 1)y(n)

(14)

R̂−1
y (n) =

1

v
R̂−1

y (n − 1)[I − k(n)yH(n)] (15)

gopt = arg min
||g||=1

gHCHR−1
y (n)Cg (16)

It has been suggested that if q, the length of g is small enough then
SVD can be applied such that gopt is considered as the eigenvector
which corresponds to the minimum eigenvalue of

[
CHR−1

y (n)C
]
(q×q)

4.3. Subspace-Based Algorithm

In [4, 5, 6, 7], the optimum channel response gopt are found by

gopt = arg min
||g||=1

gHCHR−m
y Cg. (17)

In this algorithm one can see that R−m
y is used instead of R−1

y . First
The covariance matrix Ry is decomposed by SVD as

Ry = [Us Un]

[
Λs + σ2

vI 0
0 σ2

vI

] [
UH

s

UH
n

]
, (18)

where Λs = diag{λ2
1, . . . , λ

2
q} , Us and Un represent the signal and

noise subspaces, respectively. R−m
y is determined using the noise

subspace as

σ2m
v R−m

y = UnUH
n + Us diag

{(
σ2

v

λi + σ2
v

)m}
UH

s . (19)

Since
(

σ2
v

λi+σ2
v

)m

< 1 then

lim
m→∞

σ2m
v R−m

y = UnUH
n . (20)

Once Un is found, gopt can be estimated as the eigenvector which
corresponds to the minimum eigenvalue of the matrix CHUnUH

n C.

5. NEW PROPOSED ALGORITHMS

In CDMA systems, since the spreading code of each user, ck, is
known to both, the transmitter and the receiver. Then in order to
reduce the system complexity and enhance the accuracy of the esti-
mated channel parameters, we consider the RAKE receiver shown in
Fig. 1, where the vector f in Eqn. (5) is replaced by,

f(n) = c(n) ∗ h(n) or f = Ch, (21)

where C is the same Toeplitz spreading matrix as before and the vec-
tor h contains the RAKE finger taps for user k. Since C is known,

f

h2 hq

Tc TcTc Tc

∑

b̂

c(t)

Other

h3 h4 hq−1

p(t)

algorithm
Adaptive

sgin{�{.}}∫

h1

users v(t)

y(t)b

Multi-

path

Sampling

Spreading code

Fig. 1. A Blind Adaptive Based RAKE Receiver

then one can see that instead of estimating an (N +q−1) parameters,
f as in [3], we only need to estimate a q parameters, h. Clearly this
will reduce the system complexity and give better estimates. With
this definition Eqn. (7) becomes,

hHCHCg = 1 , gHg = 1 (22)

The interesting thing about Eqn. (22) is that the term CHC ≈ Iq×q .
Under this assumption, Eqn. (22) then becomes hHg ≈ 1 with gHg =
1 it leads to h ≈ g. Since gHg = 1 we have hHh = 1.
Due to this assumption one can estimate the channel response using
a more efficient cost function that includes the previous constraints,

ζ = hH(CHRyC)h (23)

and the optimum channel response hopt which is gopt can then be
found from

hopt = arg max
||h||=1

hH(CHRyC)h. (24)

In [3], channel estimation requires minimizing the cost function w.r.t
f and maximize w.r.t g. In this approach it is less complex, it does

III - 934

➡ ➡



not require estimation of the two vectors, it requires only one vector,
hopt. Also in Eqn. (24), one can see that finding hopt does not require
the estimation of R−1

y or R−m
y compared to the solution proposed

by [3, 4, 5, 6, 7].
Estimation of hopt in this work will be determined by,

1. A fast Adaptive LMS Algorithm

2. Low Cost SVD Algorithm

3. The Maximum eigenvalue Power Based Algorithm

The three methods are given in Table 1 and summarized as follows,

5.1. Proposed Adaptive LMS Algorithm

In this LMS algorithm the estimation of the optimum channel re-
sponse, hopt is less in complexity compared to the LMS algorithm
in [3]. According to Eqn. (24), first we define the quadratic cost func-
tion,

ζ = hH(CHRyC)h. (25)

Then hopt can be found adaptively by maximizing ζ w.r.t h for each
incoming data y(n), i.e. we initialize hn and Ry(n−1) with certain
values, then we update them according to the LMS algorithm

hn+1 = hn + µh∇ζ/h (26)

where, ∇ζ/h = 2(CHRy(n)C)hn, (27)
and Ry(n) is estimated recursively by

Ry(n) = βRy(n − 1) + y(n)yH(n), 0 < β < 1 (28)

This is followed by normalizing the vector hn+1 by its energy. The
algorithm is given in Table 1 part 2-a).

5.2. Proposed SVD Algorithm

In this method we also used SVD to estimate the channel response,
but with less calculations than the methods given in [3, 4], as the pro-
posed method does not involve the estimation of R−1

y using a Kalman
filter or R−m

y in [5, 6, 7] that use two successive SVD operations, the
first is to find the noise subspace of Ry , Un and the second is to find
the eigenvalues and eigenvectors of CHUnUH

n C.
In this method, we use the same assumption as before that CHC ≈
Iq×q and the solution for hopt in Eqn. (24). Using SVD the channel
response at the n’th received symbol, hn is found as

hn = eigenvector{CHRy(n)C}, (29)

which corresponds to the maximum eigenvalue, Ry(n) is the same
as in Eqn. (28) . The algorithm is given in Table 1 part 2-b).

5.3. Proposed Power Algorithm

The eigenvectors of a matrix AL×L are the set of L-orthornomal
vectors, x = ui , i = 1, · · · , L , uHu = 1 that are the non-trivial
solutions of

Ax = λx i.e. Aui = λiui (30)

Any vector x can be expressed in terms of these sets as

x = a1u1 + a1u1 + · · · + aLuL (31)

If we assume there is a unique (only one) largest eigenvector say
λ1 > λ1 > . . . > λL then, we can find λ1 and its correspond-
ing eigenvector u1 of the matrix A by the Power method [10], as
described by the following iterative equations,

λ1 = lim
n→∞

||xn+1||
||xn||

u1 = lim
n→∞

xn+1
||xn+1||

(32)

where
xn+1 = Axn (33)

This is valid for an initial xn which is not orthogonal to the matrix
A. Since hopt is the eigenvector which corresponds to the maximum
eigenvalue of

(
CHRyC

)
, then the previous Power method can be

used to estimate the channel response, see Table 1 part 2-c).

Table 1. Proposed LMS, SVD and Power Algorithms
Step 1: Initialize hn and choose a step size 0 < µh < 1
Step 2: Let Ry(n − 1) = 0 and choose the correlation matrix updating factor 0.8 ≤
β < 1
Step 3: For n = 1, 2, ...

1. Ry(n) = βRy(n − 1) + y(n)yH(n)

2. For:
2-a) LMS Algorithm: ∇ζ/h = 2

(
CHRy(n)C

)
hn then Update hn+1 =

hn + µh∇ζ/h

2-b) SVD Algorithm: Find hn+1 = eigenvector{CHRy(n)C} which cor-
responds to the maximum eigenvalue
2-c) Power Algorithm: Find hn+1 = CHRy(n)Chn

3. Normalize hn+1 so that hn+1 =
hn+1

||hn+1|| is a unity norm vector

4. Continue until convergence occurs

5.4. Remarks on the Case Where CHC �= I

In some spreading code systems CHC �= I as before. By returning
back to the constraint in Eqn. (22) where, hHCHCg = 1, the resul-
tant estimated parameters of the previous algorithms will no longer be
h. These parameters, hb, will then be biased by the term CHC. To
validate Eqn. (22) and the minimization constraint that hH

b hb = 1,
the unbiased parameters hub that represent an estimate of g are then
determined by

hub =
(
CHC

)−1

hb (34)

Clearly we can still use the previous algorithms to estimate hb. Then,
we calculate the term CHC once and fix hb at each iteration.

6. SIMULATION RESULTS

In the following examples, we compare the performance of the new
proposed algorithms with some existing algorithms. For compar-
isons, the optimum solution go and ho are estimated using the SVD
technique calculated using an estimate of the correlation matrix Ry

over the full signal length. g and h in each case are normalized by
their first parameter. In all examples the MLBS spreading codes are
used except when mentioned, MC represents the number of Monte
Carlo runs.
Example 1:
In this example we compare the MSE between a channel which is
estimated using the adaptive RLS algorithm in Sec. 4.1 as the one
which has the best performance in [3, 4, 6] and the proposed LMS,
SVD and Power algorithms given in Sec. 5. The example input set-
tings are given in Table 2 and the results are shown in Fig. 2.

Table 2. Example 1: Input Settings
Method K N q µf µg µh SNR MC

Ref. [3, 4] 16 32 4 0.0009 0.02 - 6 dB 50
Sec. 5 16 32 4 - - 0.01 6 dB 50

Discussion of Example 1:
Simulation results in Fig. 2 show that the proposed new algorithms
performed much better and converged faster than the proposed RLS
algorithms in [3, 6] that use Kalman filters for the estimation of R−1

y

or R−m
y . Obviously the complexity of the proposed algorithms are

also much cheaper.
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Example 2:
In this example we show the performance of the SVD algorithm pro-
posed in Sec. 5.2 using the assumption that CHC ≈ I. The algo-
rithm is applied to a system with K = 16 users, N = 32 chips,
q = 8 paths. Results in Fig. 3 compare the MSE between:
- the estimated and the optimum channels, h and go

- the estimated and the true channels, h and g
Discussion of Example 2:
Using the assumption that the term CHC ≈ I, simulation results in
Fig. 3 show that the proposed adaptive SVD algorithm converges very
fast to the optimum solution, also the MSE between the estimated
channel, h and the true channel, g is small compared with MSE lower
band in [3, 5, 7]. The algorithm is low complex since it does not
require the estimation of R−1

y or R−m
y as in [3, 5, 7] or the noise

subspace as in [4, 5, 6, 7].
Example 3:
In this example we use the proposed Power algorithm given in Sec. 5.3
to a system where CHC �= I as in Sec. 5.4. The algorithm is applied
to a system with K = 16 users, N = 32 chips, q = 8 paths. The
MSE is compared as shown in Fig. 4 between:
- the biased optimum and the biased estimated channels, go and hb

- the unbiased optimum and the unbiased estimated channels,(
CHC

)−1
go and

(
CHC

)−1
hb

- the true and the biased estimated channels, g and hb

- the true and the unbiased estimated channels g and
(
CHC

)−1
hb

Discussion of Example 3:
Simulation results in Fig. 4 where CHC �= I show that the MSE be-
tween the biased and unbiased, optimum and estimated channels are
very much the same and that support Eqn. (34), also the MSE between
the true channel response, g and the biased estimated response, hb is
high. After fixing hb using, hub =

(
CHC

)−1
hb using the method

in Sec. 5.4, the MSE between g and hub become very small, i.e. the
algorithm succeeded to estimate the channel response.

7. CONCLUSION

The problem of blind channel estimation in CDMA systems is con-
sidered. Using only the spreading code of the user of interest and
the received data sequence, three low complexity algorithms are pro-
posed to estimate and track the impulse response of the channel.
While existing blind methods suffer from high computational com-
plexity, due to large SVDs and matrix inversions, the proposed meth-
ods overcome both problems. The computation complexity of the
new algorithms are compared to that of the existing approaches. Sim-
ulation results show that the proposed algorithms convergence rate is
fast and the estimation accuracy is also desirable.
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