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ABSTRACT

This paper presents two novel blind set-theoretic adaptive filtering
algorithms for Multiple Access Interference (MAI) suppression in
DS/CDMA systems. We naturally formulate the problem of MAI
suppression as minimizing asymptotically a sequence of cost func-
tions under some linear constraint defined by desired user’s signa-
ture. The proposed algorithms embed the constraint in the direc-
tion of adaptation, and thus the adaptive filter moves toward the op-
timal filter without stepping away from the constraint set. In addi-
tion, using parallel processors, the proposed algorithms attain good
performance behavior with low computational complexity. Geo-
metric interpretation clarifies an advantage of the proposed meth-
ods over some conventional methods. Simulation results demon-
strate that the proposed algorithms achieve much faster conver-
gence than the conventional methods with a moderate number of
concurrent processors.

1. INTRODUCTION

The aim of this paper is to develop a computationally efficient al-
gorithm with high speed of convergence in DS/CDMA systems
of high throughput. In order to realize high throughput systems,
blind methods for Multiple Access Interference (MAI) suppres-
sion, which do not require a training sequence, have been in great
demand [1–7]. A blind adaptive multiuser detection method was
proposed in [2] and a simple set-theoretic blind method called
Space Alternating Generalized Projection (SAGP) was proposed
in [4]. The SAGP shows better performance in the steady state at
the cost of poorer convergence rate than the method in [2].

The Constrained Normalized Least Mean Square (CNLMS)
algorithm was proposed in [8], which embeds a constraint, de-
fined by desired user’s signature, in the direction of adaptation.
Hence, the algorithm shows faster convergence than the projected
NLMS algorithm (see [9] and references therein). Unfortunately,
the CNLMS still does not show sufficient speed of convergence be-
cause it takes just one datum into account at each iteration. On the
other hand, a novel blind MAI suppression method, which we call
Blind Projected Parallel Projection (BPPP) algorithm, has been
recently established [7]. It is reported that the BPPP exhibits better
initial convergence behavior than some blind and non-blind meth-
ods, while keeping good performance in the steady state. Adap-
tation of a filter in the BPPP is constructed by two steps at each
iteration (cf. Remark 1): (i) shift the filter in a steepest decent di-
rection of a sequence of cost functions and (ii) enforce it in the
constraint set.

This paper presents two embedded constraint algorithms, de-
rived from a set-theoretic adaptive filtering scheme named Adap-
tive Projected Subgradient Method (APSM) [10–13], for blind MAI
suppression. The proposed algorithms generalize the idea of the
CNLMS with the object of taking into account more than one da-
tum with several parallel processors at each iteration. The first
stage of the algorithms estimates the amplitude of the transmitted

signal and the transmitted bits. The second stage adapts a filter
in order to minimize a new sequence of cost functions, defined
by using some stochastic property sets [see (7) in Sec. 3], for ro-
bustness, based on the estimates. The adaptation in the second
stage is constructed by one step, since the constraint is embedded
in the direction of adaptation due to the new sequence of cost func-
tions, which implies that the adaptive filter does not step away from
the constraint set. Geometric interpretation clarifies an advantage
of the proposed algorithms over the CNLMS, the SAGP and the
BPPP algorithms (see Remark 1). Simulation results exemplify
significant improvement expected by the geometric interpretation.

2. PRELIMINARIES

A. System Model

A binary phase-shift keying (BPSK) short-code DS/CDMA sys-
tem is depicted below. The received data process (r[i])i∈N ⊂ R

N

(N : the length of the signature) is

r[i] = A1b1[i]s1 +

L
X

l=2

Alb̄l[i]s̄l + n[i], ∀i ∈ N, (1)

where

A1 ∈ R : amplitude of the 1-st (desired) user
b1[i] ∈ {−1, 1} : i-th transmitted bit of the desired user

s1 ∈ {−1, 1}N : signature of the desired user

n[i] ∈ R
N : i-th noise vector.

Moreover, Al (2 ≤ l ≤ L) is the amplitude of the l-th interferer,
b̄l[i] and s̄l are respectively the i-th interfering symbol bits and
interfering vectors generated by interfering users’ parameters such
as associated data bits and signature. In the case of K users, L−1,
the number of interferers, can range from K − 1 to 2(K − 1), due
to relative delays of the K − 1 interfering users [1].

The goal of this paper is to efficiently suppress MAI,
PL

l=2 Al

b̄l[i]s̄l in (1), with a linear filter h ∈ R
N without amplifying the

noise n[i].

B. Adaptive Projected Subgradient Method [10, 11, 13]

Let C ⊂ R
N be a nonempty closed convex set1. Then, the pro-

jection operator PC : R
N → C maps a vector x ∈ R

N to the
unique vector PC(x) ∈ C s.t. d(x, C) := ‖x − PC(x)‖ =

miny∈C ‖x−y‖, where ‖x‖ := 〈x, x〉1/2, ∀x ∈ R
N (〈x, y〉 :=

xT y, ∀x, y ∈ R
N , and the superscript T stands for transposition).

1A set K ⊂ R
N is convex provided that ∀x, y ∈ K, ∀ν ∈ (0, 1),

νx + (1 − ν)y ∈ K.
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Also let Θn : R
N → [0,∞) be a continuous convex function2 and

∂Θ(y) the subdifferential3 of Θ at y. Then, the following scheme
asymptotically minimizes (Θn)n∈N over C.

Scheme 1 (Adaptive Projected Subgradient Method (APSM)
[10, 11, 13]) Generate a sequence (hn)n∈N by

hn+1 :=

8

>

<

>

:

PC

“

hn − λn
Θn(hn)

‖Θ′
n(hn)‖2 Θ

′
n(hn)

”

,

if Θ
′
n(hn) 
= 0,

hn, otherwise,

(2)

where h0 ∈ R
N , Θ

′
n(hn) ∈ ∂Θn(hn) and λn ∈ [0, 2] is the

relaxation parameter.

Basic properties of Scheme 1 are given in APPENDIX.

3. PROPOSED BLIND EMBEDDED CONSTRAINT
ADAPTIVE ALGORITHMS

This section provides two set-theoretic algorithms for a blind adap-
tive receiver. All data that can be utilized for adaptation are as-
sumed to be the sequence of received vectors (r[i])i∈N and desired
user’s signature s1. A minimum mean square error (MMSE) filter
is given as follows [5]:

h∗ ∈ argmin
h∈Cs

E
˘

(〈h, r[i]〉 − A1b1[i])
2¯ ,

where E{·} denotes the expectation and

Cs := {h ∈ R
N : 〈h, s1〉 = 1} (3)

is the constraint set. Since A1 and b1[i] are not available, we use
the following estimates [4]:

bA1,n+1 = bA1,n + γ
“

|〈hn, r[n]〉| − bA1,n

”

, (4)

bb1,n[i] = sgn 〈hn, r[i]〉 , (5)

where bA1,0 = 0 and γ ∈ (0, 1]. With these estimates, the problem
is reformulated as finding a point in

argmin
h∈Cs

E

j

“

〈h, r[i]〉 − bA1,n+1
bb1,n[i]

”2
ff

. (6)

Here, the constraint set Cs avoids the self-nulling4 (i.e., cancelling
desired user’s signal). Instead of the expectation in (6), we newly
introduce the following stochastic property sets (cf. [14]):

C(n)
ρ [i] :=

j

h ∈ R
N :

“

〈h, r[i]〉 − bA1,n+1
bb1,n[i]

”2

≤ ρ

ff

, (7)

∀n ∈ N, ∀i ∈ In := {n, n − 1, · · · , n − q + 1}, where ρ ≥ 0
is a parameter to determine the reliability5 of the set to contain h∗

(NOTE: ρ can be time-varying). Intuitively, increase of ρ inflates
the set C

(n)
ρ [i], and thus we call ρ the inflation parameter.

2A function Θ : R
N → R is said to be convex if Θ(νx+(1−ν)y) ≤

νΘ(x) + (1 − ν)Θ(y), ∀x, y ∈ R
N and ∀ν ∈ (0, 1).

3The subdifferential of Θ at y is the set of all the subgradients of Θ at
y; ∂Θ(y) := {a ∈ R

N : 〈x − y, a〉 + Θ(y) ≤ Θ(x),∀x ∈ R
N}.

4In the case that the amplitude of some interferer is greater than that of
a desired user, the filter may track not the desired user but the interferer. In
this case, desired user’s signal is suppressed. The set Cs can avoid such a
situation.

5A strategic way to design ρ is currently under investigation.

Since Cs is completely reliable to contain h∗, our strategy is
to use Cs as a hard (absolute) constraint set and {C(n)

ρ [i]}i∈In as
a collection of sets to which the distance should be reduced.

Now, let us derive the proposed algorithms from Scheme 1
with the sets defined above. Given q ∈ N\{0}, let {ω(n)

ι }ι∈In ⊂
(0, 1] satisfying

P

ι∈In
ω

(n)
ι = 1, ∀n ∈ N, be the weights for

parallel projection. Application of C = R
N and

Θn(h) :=

8

>

>

>

<

>

>

>

:

X

ι∈In

ω
(n)
ι

L
(1)
n

d(hn, C(n)
ρ [ι] ∩ Cs)d(h, C(n)

ρ [ι] ∩ Cs),

if L
(1)
n :=

P

ι∈In
ω

(n)
ι d(hn, C

(n)
ρ [ι] ∩ Cs) 
= 0,

0, otherwise,

to Scheme 1 yields the following algorithm.

Algorithm 1 (Blind Parallel Constrained Projection Algorithm)

Requirements: the control sequence In, the weights ω
(n)
ι ≥ 0

s.t.
P

ι∈In
ω

(n)
ι = 1, the signature s1, the projection matrix Q :=

I − s1sT
1 (I: the identity matrix), the inflation parameter ρ ≥ 0,

the step size λn ∈ [0, 2] and the forgetting factor γ ∈ [0, 1).
Initialization: A1,0 = 0, h0 = s1 ∈ Cs

Algorithm:
1) Estimation of A1 and b1[ι]

bA1,n+1 = bA1,n + γ
“

|〈hn, r[n]〉| − bA1,n

”

bb1,n[ι] = sgn 〈hn, r[ι]〉 , ι ∈ In

2) Adaptation of filter

hn+1 = hn + λnM(1)
n

 

X

ι∈In

ω(n)
ι P

C
(n)
ρ [ι]∩Cs

(hn) − hn

!

, (8)

where

P
C

(n)
ρ [ι]∩Cs

(h)=

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

h − 〈h, r[ι]〉 − bA1,n+1
bb1,n[ι] −√

ρ

r[ι]T Qr[ι]
Qr[ι],

if 〈h, r[ι]〉 − bA1,n+1
bb1,n[ι] >

√
ρ,

h − 〈h, r[ι]〉 − bA1,n+1
bb1,n[ι] +

√
ρ

r[ι]T Qr[ι]
Qr[ι],

if 〈h, r[ι]〉 − bA1,n+1
bb1,n[ι] < −√

ρ,
h, otherwise.

(9)

M(1)
n :=

8

>

>

>

>

>

<

>

>

>

>

>

:

P

ι∈In
ω

(n)
ι

‚

‚

‚

P
C

(n)
ρ [ι]∩Cs

(hn) − hn

‚

‚

‚

2

‚

‚

‚

P

ι∈In
ω

(n)
ι P

C
(n)
ρ [ι]∩Cs

(hn) − hn

‚

‚

‚

2 ,

if hn /∈ Tι∈In
C

(n)
ρ [ι] ∩ Cs,

1, otherwise.

Note that (9) holds under the condition h ∈ Cs. Fortunately,
however, hn ∈ Cs, ∀n ∈ N, because (i) h0 ∈ Cs and (ii) hn ∈
Cs ⇒ hn+1 ∈ Cs from (3) and (8).

On the other hand, application of C = R
N and Θn(h) :=

Φn(PCs(h)), where

Φn(h) :=

8

>

>

>

<

>

>

>

:

X

ι∈In

ω
(n)
ι

L
(2)
n

d(hn, C(n)
ρ [ι])d(h, C(n)

ρ [ι]),

if L
(2)
n :=

P

ι∈In
ω

(n)
ι d(hn, C

(n)
ρ [ι]) 
= 0,

0, otherwise,

to Scheme 1 yields the following algorithm.
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{ {

CNLMS: h
(3)
n+1

Algorithm 1: h
(1)
n+1

Algorithm 2: h
(2)
n+1

hn

h
(1)
n+1

h
(2)
n+1

h
(3)
n+1

h∗
Cs

R
N

C
(n)
ρ [n] ∩ Cs

C
(n)
0 [n] ∩ Cs

C
(n)
ρ [n − 1] ∩ Cs

Fig. 1. Geometric interpretation of embedded constraint methods:
the proposed algorithms and the CNLMS algorithm. The dotted
area shows C

(n)
ρ [n] ∩ C

(n)
ρ [n − 1] ∩ Cs.

Algorithm 2 (Blind Constrained Parallel Projection Algorithm)

Requirements & Initialization: the same as Algorithm 1
Algorithm:
1) Estimation of A1 and b1[ι]: the same as Algorithm 1
2) Adaptation of filter

hn+1 =hn+λnM(2)
n P

eCs

 

X

ι∈In

ω(n)
ι P

C
(n)
ρ [ι]

(hn) − hn

!

, (10)

where eCs := {h ∈ R
N : 〈h, s1〉 = 0} and

P
eCs

(h) = Qh,

P
C

(n)
ρ [ι]

(h) =

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

h − 〈h, r[ι]〉 − bA1,n+1
bb1,n[ι] −√

ρ

‖r[ι]‖2 r[ι],

if 〈h, r[ι]〉 − bA1,n+1
bb1,n[ι] >

√
ρ,

h − 〈h, r[ι]〉 − bA1,n+1
bb1,n[ι] +

√
ρ

‖r[ι]‖2 r[ι],

if 〈h, r[ι]〉 − bA1,n+1
bb1,n[ι] < −√

ρ,
h, otherwise,

M(2)
n :=

8

>

>

>

>

>

<

>

>

>

>

>

:

P

ι∈In
ω

(n)
ι

‚

‚

‚

P
C

(n)
ρ [ι]

(hn) − hn

‚

‚

‚

2

‚

‚

‚

P
eCs

“

P

ι∈In
ω

(n)
ι P

C
(n)
ρ [ι]

(hn) − hn

”

‚

‚

‚

2 ,

if
P

ι∈In
ω

(n)
ι P

C
(n)
ρ [ι]

(hn) − hn /∈ eC⊥
s ,

1, otherwise.

Algorithm 2 belongs to the family of Embedded Constraint
Adaptive Projected Subgradient Method (EC-APSM) [10, 11, 13].
We remark that Qa = a−s1(sT

1 a), ∀a ∈ R
N , requires 2N mul-

tiplications to compute. Moreover, ∀ι ∈ In \ {n}, “r[ι]T Qr[ι]

and Qr[ι] in Algorithm 1” and “‖r[ι]‖2 in Algorithm 2” are com-
puted at the previous iterations. By these remarks, we see that both
Algorithms 1 and 2 require (4q +5)N multiplications at each iter-
ation. With q concurrent processors, furthermore, since each term
in the summation in (8) [or (10)] can be computed in parallel, the
number of multiplications imposed on each processor is reduced
to no more than 9N ; i.e., the complexity order imposed on each
processor is linear. This implies that the proposed algorithms are
suitable for real-time implementation.

{

{

Algorithms 1 and 2: h
(1)
n+1, h

(2)
n+1

SAGP: h
(4)
n+1

h
(1)
n+1, h

(2)
n+1

h
(3)
n+1

h
(4)
n+1

BPPP: h
(3)
n+1

hn

h∗

Cs

R
N

C
(n)
0 [n]

C
(n)
ρ [n]

C
(n)
ρ [n − 1]

Fig. 2. Geometric interpretation of non-embedded constraint
methods (the SAGP and the BPPP) and the proposed algorithms.
The dotted area shows C

(n)
ρ [n] ∩ C

(n)
ρ [n − 1].

Figures 1 and 2 illustrate geometric interpretations of filter
adaptation in Algorithms 1 and 2 compared with a simple embed-
ded scheme (the CNLMS), and non-embedded schemes (the SAGP
and the BPPP), respectively. The number of parallel processors q

is set to 2, and the uniform weights, ω
(n)
ι = 1/2 (∀ι = 1, 2), are

employed. For the BPPP, the step size is set to Mn. For the other
methods, the step sizes are set to 1. The optimal filter h∗ is as-
sumed to belong to the intersection C

(n)
ρ [n] ∩ C

(n)
ρ [n − 1] ∩ Cs.

A remark on geometric comparisons is given below.

Remark 1 (Geometric Comparisons)
From Fig. 1, we see that the proposed algorithms generate closer
points to the optimal filter h∗ than the CNLMS due to its par-
allel structure; i.e., the proposed algorithms utilize multiple data
simultaneously. As also seen in the figure, Algorithm 1 takes an
averaged direction of exact projections onto {C(n)

ρ [ι] ∩ Cs}ι∈In ,
while Algorithm 2 takes an averaged direction of relaxed projec-
tions. The relaxation depends on the angle between s1 (the normal
vector of the hyperplane Cs) and r[ι] (that of the boundary hyper-
plane of C

(n)
ρ [ι]).

From Fig. 2, we see that the BPPP generates a closer point
to h∗ than the SAGP, and the proposed algorithms generate even
closer points than the BPPP and the SAGP, due to its embedded
constraint structure. We also see that the SAGP and the BPPP
are constructed by two steps; the second step is to enforce the
filter in the constraint set. On the other hand, the CNLMS and
the proposed algorithms adapt the filter along the constraint set,
hence they are constructed by one step.

The following section shows some numerical comparison exem-
plifying the discussion in Remark 1.

4. SIMULATION RESULTS

Computer simulations examine the speed of convergence of the
proposed blind algorithms (Algorithms 1 and 2) under signal-to-
noise ratio (SNR) =15 dB (This situation is the same as or even
worse than many other reports; e.g., [4, 6]). We compare the pro-
posed methods with the following ones: the OPM-GP [2, 4], the
SAGP [4], the blind CNLMS [8] and the BPPP [7]. The perfor-
mance characteristic is shown by the ensemble-averaged output
signal to interference-plus-noise ratio (SINR) [1, 2, 4]. The num-
ber of interfering users is (K − 1) = 5, and all users have am-
plitude 10 times greater than the amplitude of the desired signal
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Fig. 3. Output SINR curves for SNR = 15 dB.

A1 = 1. Signals are modulated by 31-length gold sequences,
which are chosen randomly.

We initialize h0 = s1 for all algorithms, and x0 = 0 for
OPM-GP. For the proposed algorithms and the BPPP, common pa-
rameters are employed: r[i] = r[1] for i ≤ 1, q = 16, ρ = 0,
γ = 0.01 and ω

(n)
ι = 1

q
, ∀ι ∈ In. For the BPPP, step size is set

to 0.2Mn. For Algorithms 1, 2, the step sizes are set to λn = 0.2.
For the OPM-GP, the SAGP and the CNLMS, two different step
sizes are used: 0.2 and 1.0.

As expected from Remark 1, we observe that the proposed al-
gorithms outperform all other methods in terms of speed of conver-
gence, while attaining good SINR in the steady state. Moreover,
the additional computational complexity imposed by the proposed
algorithms can be somehow alleviated by using processors in par-
allel (see under Algorithm 2).

5. CONCLUDING REMARKS

This paper has presented two blind adaptive filtering algorithms for
MAI suppression in DS/CDMA systems. Since the proposed algo-
rithms are based on parallel projection with embedded constraint,
they achieve closer points to the optimal filter than some conven-
tional methods at each iteration. Simulation results have shown
that the proposed algorithms exhibit excellent performance. Fi-
nally, we remark that Algorithm 1 can be generalized by using an
arbitrary linear variety6 instead of Cs and an arbitrary collection
of closed convex sets instead of {C(n)

ρ [ι]}ι∈In .

APPENDIX

Scheme 1 has the following properties [10, 11, 13].
(a) (Monotonicity)

‚

‚

‚

hn+1 − h∗(n)
‚

‚

‚

≤
‚

‚

‚

hn − h∗(n)
‚

‚

‚

,

∀h∗(n) ∈ Ωn := {h ∈ C : Θn(h) = infx∈C Θn(x)}, ∀n ∈ N.

(b) (Asymptotic minimization)
Suppose (Θ′

n(hn))n∈N is bounded and ∃N0 s.t. (i) infx∈C Θn(x)
= 0, ∀n ≥ N0 and (ii) Ω :=

T

n≥N0
Ωn 
= ∅. Then, we have

lim
n→∞

Θn(hn) = 0.

6Given v ∈ R
N and a closed subspace M ⊂ R

N , the translation of
M by v defines the linear variety V := v + M := {v + m : m ∈ M}.
If dim(M⊥) = 1, V is called hyperplane, which can be expressed as
V = {x ∈ R

N : 〈a, x〉 = c} for some (0 �=)a ∈ R
N and c ∈ R.

Note that Θ′
n used to derive Algorithm 1 (or Algorithm 2) in

Sec. 3 is automatically bounded [11].
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