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ABSTRACT

At the base station in hybrid CDMA systems, multi-user detection

(MUD) techniques are exploited to alleviate both multiple access

(MAI) and inter-symbol (ISI) interference. MMSE MUD algo-

rithms solve a linear problem where the system matrix has a block-

Toeplitz shape. Sub-optimal algorithms with reduced complexity

are mandatory to reduce the high computational load imposed by

exact inversion techniques. However, when computational com-

plexity is strongly reduced, sub-optimal algorithms may suffer per-

formances degradation and severe near-far effects. In this paper,

we introduce a new detector scheme that uses the block-Bareiss

algorithm. This detector shows good performances and low com-

putational power requirements, comparing favorably with simple

implementations based on block-Fourier techniques. Simulations

are presented and discussed for the specific TD-SCDMA applica-

tion.

1. INTRODUCTION

In hybrid CDMA mobile systems, MUD algorithms are adopted

at the base station to greatly reduce both inter-symbol (ISI) and

multiple access (MAI) interference [1]. For each data-packet, or

block, MMSE MUD solves a linear system where the system ma-

trix has a block-Toeplitz structure. Due to the large matrix size

and short computational time available, exact MUD computation

cannot be employed for the high computational load that it im-

poses to the base station processing elements. In fact, in real-time

systems with limited and expensive computational resources, only

sub-optimal algorithms may be efficiently used.

Two main algorithm families are usually employed: block-

based MUD [2]-[3]-[4] and one-shot MUD also known as slid-

ing windows detector (SWD) [5]-[6]. Usually, algorithm selection

is performed taking into consideration performances, complexity

and implementation issues of the algorithms under test. However,

when computational power requirement is the key aspect (i.e.,

during the industrial implementation phase), severe performance

degradation may be introduced.

Keeping in mind these considerations, we present a new MUD

detector based on the block-Bareiss (BB) algorithm that is derived

from the plain Bareiss factorization scheme [7]. For a specific

TD-SCDMA application, we compare its performances and com-

putational complexity with respect to the corresponding ones of

the block-Levinson scheme (BL) [8] and block-Fourier Transform

(BFT) algorithm [4]. With respect to the other MUD algorithms,

the Bareiss detector is well suited for hardware/software imple-

mentation not only for its low computational load but also for its

good performances. In addition, it does not suffer from near-far

effects that influence very low complexity implementations such

as the low order BFT. It is worth noticing that it is also suitable for

parallel implementation [9].

The paper is organized as follows: in the next section the hy-

brid CDMA signal model is described, while Section 3 introduces

the Bareiss algorithm and briefly recalls the other reduced com-

plexity algorithms selected for comparison. The performances and

computational complexity of the Bareiss method are evaluated in

Section 4 and Section 5, respectively. Section 6 draws some con-

clusions.

2. HYBRID CDMA SIGNAL MODEL

In hybrid CDMA systems, such as in the CWTS standard [10], K
users (1 ≤ K ≤ 8) share the same frequency band and time slot

while being separated only by different spreading codes. Each k-
th user transmits data bursts consisting of 2N QPSK symbols (N =
352/Q, N symbols for each semi-burst) where the spreading factor

Q is assumed here constant for all users (Q ∈ {1,2,4,8,16}). In

the following, we also impose that the channel impulse response

(CIR) is known and do not vary during the burst. Moreover, we

assume also that the CIR length W , expressed in chip intervals, is

W = 16.

The base-band MIMO (Multiple Input Multiple Output) model

may be simply expressed at discrete chip time Tc as: y = Ad+n.

The M(NQ +W − 1)× 1 vector y indicates the signal received at

the base station by the array of M antennas (1 ≤ M ≤ 8). Vector d
represents the transmitted data arranged as a vector of size NK×1

while n includes the effects of both electronic noise and inter-cell

interference. Noise vector n is zero mean Gaussian, assumed tem-

porally uncorrelated and spatially correlated with covariance ma-

trix Rn = E[nnH] = Rn ⊗ INQ+W−1 where Rn is the spatial covari-

ance matrix ([Rn]m,m = σ2
n for m = 1, ...,M), ⊗ is the Kronecker’s

product and INQ+W−1 is the unitary matrix of size NQ+W −1.

Since CIRs are assumed constant during each data burst, the

system matrix A of size M (NQ+W −1)×NK can be arranged

as N shifted copies of the block B. Fig. 1 shows how each sub-

matrix B of size M(Q +W − 1)×K is composed by K column

vectors bk where each of them represents the convolution between

the k-th spreading code and the CIRs for all M antennas. The term

v = �(Q+W −1)/Q� is the delay spread v expressed in symbol

intervals. Without any loss of generality, in the followings we will

assume a zero-forcing detector scheme (ZF-MUD).

The received signal vector y is filtered by the whitening space-

temporal (S-T) matched filter producing the NK ×1 output vector

yMF = AHR −1
n y. Linear ZF-MUD is then performed estimating

the NK data symbols d̂ = R−1yMF =
(
AHR −1

n A
)−1 AH R −1

n y
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Fig. 1. Matrices A , B and R = AHR −1
n A.

where R−1 is the NK ×NK decorrelating matrix obtained from

matrix R = AHR −1
n A.

3. EFFICIENT DETECTOR ALGORITHMS

As shown in Fig. 1, correlation matrix R is composed by N ×N
blocks having size K × K; it is block-Toeplitz and block-band

with only 2v− 1 non null block diagonals. Most of the complex-

ity of linear multiuser detector algorithms depends on the inver-

sion methods adopted for this large correlation matrix R and on

the matched filter computation [6]. Using an antenna array with

M >> 1, the cost of the matched filter yMF prevails with respect

to the inversion one; however, it is worth noticing that the matched

filter calculation has a high degree of parallelism that can be easily

exploited using a polyphase Q decimated filter bank.

Some MUD algorithms compute directly the decorrelating ma-

trix R−1and then calculate the solution d̂ = R−1yMF by matrix

multiplication. Other algorithms factorize matrix R and then solve

equation Rd̂ = yMF by backward/forward substitution (B/FS).

While the block-Levinson algorithm belongs to the first class of

techniques, the latter family includes the block-Fourier (BFT) [11]

algorithm and all methods derived from the QR decomposition. To

the second family belongs also the block-Bareiss algorithm that we

will introduce later.

3.1. Factorization algorithms
The computation of the Cholesky factor L for a generic NK ×NK
matrix requires a number of operations in the order of O[N3K3]
which is prohibitive for large block size N and/or high number of

users K.

The BFT algorithm [4] is derived from the plain Fourier algo-

rithm: it factorizes matrix R by means of the Fourier Transform

if R is circulant. Unfortunately, matrix R is not circulant and it is

also block-Toeplitz and block-band. However, it may be made cir-

culant just adding and arranging columns of block. Circulant ma-

trix Rc, that approximates true matrix R, has size DK×DK where

D = N + v− 1. The block-Fourier algorithm factorizes Rc by ap-

plying a Fast Fourier Transform (FFT) of size D. Solution d̂ is

computed by applying a backward substitution and an inverse FFT

[4]. It is possible to speed up the block-Fourier algorithm reduc-

ing the length D of the FFT with respect to its true value N +v−1

by exploiting the well-known overlap-and-save technique and us-

ing optimized and inexpensive radix-4 FFT operators. It requires
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Fig. 2. Structure of matrices R(−i) and R(+i) used in the Bareiss

algorithm for i = 3. The example refers to tridiagonal block matrix

R found in the CWTS standard with v = 2.

the use of L = �N/(D−prelap−postlap)� data vector slices of

reduced size D to cover N symbols where prelap,postlap are the

overlapping intervals.

The BL algorithm is derived from the plain Levinson algo-

rithm that computes the direct problem Rx = y by inverting the

matrix R that is Hermitian, Toeplitz and positive defined. For a

generic matrix R of size n × n, this technique requires a num-

ber of operations in the order of O[n2]. The BL algorithm has

been extended for block-Toeplitz matrices [8] of size NK×NK by

solving, through N − 1 iterative steps, the block-Toeplitz system

R(i+1)d̂(i+1) = y(i+1)
MF where d̂(i)and y(i)

MF are sub-vectors of length

iK obtained from vectors d̂ and yMF respectively. As in the BFT

algorithm, it is also possible to speed up the algorithm processing

by considering that after few iterations, some internal parameters

converge rapidly to their final values [4] and may therefore con-

sidered constant. All these approximate algorithms have differ-

ent behavior depending on one or more parameters: FFT size D
and prelap/postlap (or L) parameters for BFT and iteration step i
for BL. These design parameters greatly affect both performances,

computational complexity and hardware/software implementation

issues.

3.2. Bareiss algorithms
The plain Bareiss algorithm [7] employs an iterative technique for

solving a generic linear Toeplitz system Rx = y by LU factoriza-

tion of the system matrix R of size n× n. The complexity of the

algorithm is in the order of O[n2]. The key point is to transform the

original system in the following equivalent ones (for 1≤ i≤ n−1):

R(±i)d= y(±i) (1)

where the matrices R(−i) have zero elements along the i sub-

diagonals below the main diagonal and matrices R(+i) have zero

elements along the i sub-diagonals above the main diagonal. As

shown in Fig. 2, R(−i) is an upper triangular matrix while R(+i) is

a lower triangular one. These transformations are chosen to elim-

inate diagonals; each transformation requires a number of opera-

tions in the order of O[n].
Let Zi =

(
δw− j+i

)
w=0,...,n−1; j=0,...,n−1

be a shift matrix such

that pre-multiplication by Z+i shifts i rows up with zero fill and

pre-multiplication by Z−i shifts i rows down with zero fill. The

transformations of the i-th iteration are defined by:

R(−i) = R(−(i−1)) −m−iZ−iR+(i−1)

y(−i) = y(−(i−1)) −m−iZ−iy+(i−1)

R(+i) = R(+(i−1)) −m+iZ+iR−(i)

y(+i) = y(+(i−1)) −m+iZ+iy+(i)

(2)
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for i = 1, . . . ,n − 1 where m−i = r(−(i−1))
i,0 /r0, m+i =

r(i−1)
+i,0 /r(−i)

n−1,n−1 and δi is the Kronecker’s delta. After n − 1

iterations, the system R(−(n−1))d = y(−(n−1)) may be solved with

BS. This method is equivalent to the LU factorization of R = LU:

r0L=
(

R(n−1)
)T 2

and U= R(−(n−1)) where T 2 denotes matrix

transposition above the main diagonal.

The block-Bareiss algorithm still employs (1) but now transfor-

mations try to eliminate block diagonals of size K ×K. After i it-

erations, the matrix R(−i) has null blocks along the i sub-diagonals

below the main diagonal and the matrix R(+i) has null blocks along

the i sub-diagonals above the main diagonal. The transformations

of the i-th iteration (i = 1, . . . ,N −1 ) are defined by equations:

R(−i) = R(−(i−1)) −M−iZ−iR(i−1)

y(−i) = y(−(i−1)) −M−iZ−iy(i−1)

R(+i) = R(+(i−1)) −M+iZ+iR(−i)

y(+i) = y(+(i−1)) −M+iZ+iy(−i),

(3)

where Zi =
(
δw− j+i

)
w=0,...,N−1; j=0,...,N−1

, M−i =

R(−(i−1))
i,0 (R0)

−1 and M+i = R(i−1)
+i,0

(
R(−i)

N−1,N−1

)−1
. Af-

ter N − 1 iterations, we obtain an upper triangular system

R(−(N−1))d = y(−(N−1)) where R(−(N−1)) is a block matrix.

It may be solved by applying a B/FS. Note that, as in the BL

algorithm, the most important design parameter is the number i of

iterations.

4. SIMULATION RESULTS

According to the CWTS standard [10], the parameters employed

in system simulations are: K = 8 (K = 2 in near-far simulations),

N = 22, Q = 16 and W = 16. The scenario is characterized by

100000 bursts of up-link traffic data only with scrambling and

spreading codes but without channel coding. The spatio-temporal

channel model adopted for the simulations is derived from the Typ-

ical Urban (TU) multipath propagation channel as introduced by

the COST-207 group. This model has been selected for easy com-

parison with respect to spatial only algorithms (M = 1). For each

k-th user, the channel Hk consists of a single cluster of 12 uncor-

related paths, whose delays and mean powers are fixed and set

according the TU model. Each p-th path angle (p = 1, ..,12) is

a random variable θk,p = N
(
θk,σ2

θ
)

with θk = U [−π/3,+π/3]
and σθ = π/36. Mobile position is not changed during simula-

tion. In addition, perfect knowledge of the channel is assumed

while E
[
‖Hk‖2

]
is constant for all K users. The base station

employs a single antenna (M = 1) or a linear array (M = 8) of

equally spaced antennas at λ/2. The performances of the approxi-

mate MUD algorithms (BFT, BB and BL) and the exact inversion

scheme are compared in terms of BER for varying SNR defined as

SNR = QE
[
‖Hk‖2

]
/2σ2

n. In the followings, the block-Fourier al-

gorithms are indicated as BFT-4 and BFT-16 for D = 4 and D = 16,

respectively.

Fig. 3 shows algorithm performance degradation due to near-far

effects with single antenna array M = 1, K = 2 users and perfect

(ρ = 0 dB) or no power control (ρ = 20 dB). While BB and BL

algorithms show good near-far resistance, both BFT-4 and BFT-16

are not well suited in case of an inefficient power control system.

In Fig. 4 and 5, the performances of the MUD algorithms are

compared in the case of a single antenna (M = 1) and antenna ar-

ray (M = 8), respectively. In the single antenna scenario, for two
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Fig. 3. Near-far performances of MUD algorithms in terms of

BER vs. SNR for different design parameters (D, prelap, postlap,

i). Simulation parameters are: ρ = 0, 20 dB, M = 1, K = 2, Q = 16,

W = 16.
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Fig. 4. Performances of MUD algorithms in terms of BER vs.

SNR for different design parameters (D, prelap, postlap, i). Simu-

lation parameters are: M = 1, K = 8, Q = 16, W = 16.

or more iterations (i ≥ 2) both BB and BL algorithms have per-

formances similar to the ones corresponding to the exact system

inversion method. On the contrary, the BFT algorithm strongly

depends on the FFT size D and the prelap (pre) and postlap (post)

values. In fact, while for D = 16 , pre > 0 and post > 0, the BFT

detector performances are close the the optimum ones, if D = 4

any combination of pre and post coefficients cannot obtain perfor-

mances near to those corresponding to the exact inversion case,

being combination pre = 1, post = 2 the most effective (L = 22).

For the linear antenna array scenario with M = 8, performances

are significantly better than the previous ones due to the effect of

the array spatial processing. All algorithms show good perfor-

mances except the BFT algorithm for the artifacts introduced by

the overlap-and-save technique (e.g., D = 16, pre = 0, post = 0;

D = 4, pre = 0, post = 0; D = 4, pre = 1, post = 0 and D = 4,

pre = 0, post = 1). It is worth noticing that only one iteration is

enough for BB and BL algorithms to converge to the exact solu-

tion.
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Fig. 5. Performances of MUD algorithms in terms of BER vs.

SNR for different design parameters (D, prelap, postlap, i). Simu-

lation parameters are: M = 8, K = 8, Q = 16, W = 16.

5. ALGORITHM COMPUTATIONAL COMPLEXITY

Tab. 1 shows the computational complexity of BB, BFT and BL

algorithms in terms of complex multiplications (×105) for each

semi-burst. The shown algorithms perform the matched filter in

the time domain (e.g., BL and BB) or frequency domain (e.g.,

BFT). Matrix R is tri-diagonal (v = 2) block-Toeplitz, with a lot

of null blocks. Several algorithm optimizations have been adopted

to reduce both computational complexity and storage size of the

algorithms shown in section 3. For instance, in the BB algorithm

it is possible to: reduce the matrix multiplications of (3) to block

multiplications; rearrange the matrices of blocks R(+i) and R(−i)

as one column of blocks of variable size for each modified diag-

onal; reuse the already inverted blocks in the backward substitu-

tion phase [12]. It is apparent that both BB and BFT-4 algorithms

are well suited for their low complexity requirements. However,

when overall performances are the key aspect, the Bareiss algo-

rithm should be employed.

Param. Algorit. Comp. complexity
M = 1 M = 8

L = 4

L = 3

L = 2
BFT-16

0.27

0.22

0.18

1.19

1.01

0.83

L = 22

L = 11

L = 6
BFT-4

0.25

0.14

0.09

1.19

0.68

0.45

i = 21

i = 5

i = 3

i = 1

BB

1.43

0.41

0.28

0.15

1.97

0.94

0.82

0.69

i = 21

i = 5

i = 3

i = 1

BL

3.68

1.06

0.91

0.81

4.21

1.59

1.45

1.34

Table 1. Computational complexity of detector algorithms in

terms of complex multiplications (×105) per semi-burst.

6. CONCLUSIONS

A novel CWTS multiuser detector based on block-Bareiss algo-

rithm has been introduced. From the computational point of view,

it has a complexity figure similar to the block-Fourier algorithm.

However, the block-Bareiss shows better near-far resistance and

overall performances with respect to the Fourier detector.
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