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ABSTRACT

We consider the problem of interference suppression in mul-
tipath DS-CDMA downlink using a general RAKE receiver
structure with M fingers and arbitrary finger delays. Utiliz-
ing asymptotically optimal sampling design theory, a new
design approach that optimizes the receiver performance over
the finger delays is proposed. It provides a set of delays
which are asymptotically optimal for large M , and sheds
light on the behavior of various finger placements’ perfor-
mance, as the number of fingers increases, and on the effect
of the smoothness of the underlying chip pulse. Numerical
results show that for certain Rayleigh fading channels and
several chip pulses, the proposed finger placement is supe-
rior to the chip periodically-spaced finger placement.

1. INTRODUCTION

In DS-CDMA downlink systems, each user is assigned an
orthogonal code. However, the orthogonality is lost due to
the multipath channel. Among the various proposed tech-
niques for interference suppression, linear processing is prac-
tical for mobile stations because of its low complexity. In
the literature, ”chip-level” algorithms have been developed,
which performs interference suppression and despreading
separately [1]-[3]. These receivers equivalently estimate the
transmitted chip and try to restore the orthogonality between
users by equalizing the downlink channel. Most previous
studies assume a tapped-delay-line equalizer (TDLE) struc-
ture, with tap spacing equal to one or a fraction of the chip
period. However, for linear estimation, this choice may not
be optimal and a large number of taps would be necessary
when the multipath span is much larger than the chip pe-
riod. In [4], a general receiver model for linear chip-level
interference suppression is proposed, of which the TDLE is
a special case. It has a similar structure as the RAKE re-
ceiver, except the number of fingers and delay at each finger
can be arbitrary. Two numerically-based suboptimal finger
placement schemes are also presented in [4].
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In this paper, we employ the same general model as
in [4] and propose an asymptotically optimal finger place-
ment design. The approach is developed by establishing a
relationship between optimal sampling design and optimal
finger placement, and then employing results from asymp-
totical optimal sampling design [5]. The resulting set of
delays is asymptotically optimal in the number of fingers
for a wide class of the so-called “regular” finger placement
schemes, including the uniformly spaced finger placement.
Furthermore, in contrast to past work, this approach is an-
alytical and shed lights on the behavior of various regular
finger placements’ performance as the number of fingers in-
creases. In particular, it provides insight into the effect of
the smoothness of underlying chip pulse on performance.

The rest of the paper is organized as follows. The system
model is introduced in Section 2. In Section 3, we present
the proposed finger placement design in detail. Numerical
results are presented in Section 4.

2. SYSTEM MODEL

We consider a single-cell, downlink, DS-CDMA system with
Q users and spreading gain N . The mth symbol transmit-
ted by user k is denoted by xk [n]. We assume the symbols
are i.i.d. r.v.’s with zero mean and unit power. The spreading
code for xk [n] is [cn,k [0] , . . . , cn,k [N − 1]], where cn,k [i] =
wk [i] sn [i] for i = 0, . . . , N − 1. The code [wk [0] , . . . ,
wk [N − 1]] is orthogonal for different k and we assume it
has unit norm. We also assume sm [n] , the scrambling code,
is QPSK modulated i.i.d. r.v., whose real and imaginary part
independently take value from

{±1/
√

2
}

with equal prob-
ability. Thus, the nth chip in the transmitted chip sequence
is

e [n] =
∑Q

k=1

√
Pkxk [�n/N�] c�n/N�,k [n mod N ]

where Pk is the transmit power of user k. After chip-pulse-
shaping, the continuous-time transmit signal is e (t) =∑∞

n=−∞ e [n] p (t − nTc) where 1/Tc is the chip rate and

p (t) is the chip waveform. We assume
∫ ∞
−∞ |p (t)|2 dt =

1. The signal received after propagating through a channel
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with L paths, with gain αl and delay τ l on path l, is

r (t) =
∑L

l=1
αle (t − τ l) + nw (t) (1)

where nw (t) is zero-mean complex white Gaussian noise
process satisfying E {nw (t + τ)n∗

w (t)} = N0δ (τ).
The receiver is shown in Fig.1. The received signal r (t)

is passed through a chip matched-filter (MF) with impulse
response p∗ (−t). Defining Rp (t) �

∫ ∞
−∞ p (u) p∗ (u − t) dt

and q (t) �
∑L

l=1 αlRp (t − τ l), it is easy to see that the
output signal of chip MF is

v (t) =
∑∞

n=−∞ e [n] q (t − nTc) + nc (t) (2)

where nc (t) is the filtered additive noise. We assume the
receiver has M fingers wih finger location defined by t �
[t1,M , . . . , tM,M ]T with ti,M ∈ [a, b]. Hence for estimating
the chip e[n], v (t) is sampled to form
dn � [v (t1,M + nTc) , . . . , v (tM,M + nTc)]T and the es-
timate of e [n] is given by ê [n] = gHdn. The symbol
estimate is obtained by despreading the estimated chips.
Reference [6] studied the properties of the weight vector g
that minimizes the chip-level MSE E

∣∣e [n] − gHdn

∣∣2. It is
shown there that the chip MMSE is given by

MMSE(t) = σ2
e

[
1 + qH

0 (t)R−1
u q0 (t)

]−1
(3)

where qn (t) is an M × 1 vector whose ith element is
q (ti,M + nTc); σ2

e is the energy per chip and σ2
e = E |e [n]|2

= 1
N

∑Q
k=1 Pk; Ru is the M × M matrix,

Ru =
∑

j �=0
qj (t)qH

j (t) +
N0

σ2
e

Rp(t) (4)

where the M×M matrix Rp(t) has Rp (ti,M − tj,M ) as its
i-jth element. This choice of g is also shown in [6] to max-
imize the SINR of the kth user’s symbol estimates, SINRk.
In particular, SINRk(t) = Pk/MMSE(t)−Pk/σ2

e. Fur-
thermore, if we assume that the interference plus noise term
is approximately Gaussian, then the bit error probability of
user k is Pe,k = Q(

√
(2βSINRk)) where β = 1 for BPSK

and β = 1/2 for QPSK modulated symbols [6].

3. ASYMPTOTICALLY OPTIMAL FINGER
PLACEMENT

The problem of finger placement corresponds to choosing
t. We observe that the t minimizing the MMSE(t) in (3)
also maximizes SINRk. However, MMSE(t) depends
on t in a nonlinear way, so exact optimization is not analyt-
ically tractable. Furthermore, MMSE(t) is not a convex
function of t. We have observed in simulation that it has
many local minima and the direct application of numerical
optimization does not give satisfactory results.

In the following subsections, we first review the sam-
pling design theory originally presented in [5] and extended
by us to complex-valued random processes. Then we apply
it to our problem and derive the set of finger delays that are
asymptotically optimal in M .

3.1. Review of the sampling design theory

The sampling design theory addresses the problem of esti-
mating a stochastic integral, I =

∫ b

a
φ∗(t)X(t)dt by a dis-

crete sum In �
∑n

i=0 c∗i,nX(ti,n), where X(t) is a second-
order random process over [a, b] with zero mean and co-
variance function R(t, s) = E[X(t)X∗(s)]. The quality
of the estimator In is measured by E |I − In|2. Denote by
Tn = {ti,n}n

i=0 the set of sampling points. Once Tn is de-
termined, the optimal weights {ci,n}n

i=0 are easy to derive
by solving a set of Wiener-Hopf linear equations. We con-
sider “regular” sampling designs generated by some posi-
tive continuous function h(t) on [a, b] via∫ ti,n

a

h(t)dt = i/n for i = 1, . . . , n (5)

Note that choosing h(t) = 1/(b − a) leads to uniform sam-
pling, and the problem of optimal sampling corresponds to
choosing an appropriate h(t). We denote by Tn(h) the set of
n points specified by (5) and In(h) to be the corresponding
discrete sum. Under some regularity conditions, we have
the following result [6]:

lim
n→∞n2K+2E |I − In (h)|2

=
|B2K+2|

(2K + 2)!

∫ b

a

|φ (t)|2 Re [αK (t)]
h2K+2 (t)

dt

where K is the exact quadratic-mean differentiability of X(t),
Bn is the Bernoulli number, and αK (t) = R(K,K+1) (t, t−)−
R(K,K+1) (t, t+). More technical details on the sampling
design theory can be found in [6].

3.2. Applying the sampling design theory

The above result gives the mean-square-error of approxi-
mating a stochastic integral by a discrete sum. We now
relate this approximation to our chip estimation problem.
Consider the optimum continuous-time estimate of e [0] by
filtering {v (t) , a ≤ t ≤ b}, that is, êopt �

∫ b

a
v (t) g∗opt (t) dt

where gopt (t) is the solution of the integral equation∫ b

a

Rv (t, u) gopt (u) du = σ2
eq (t) for t ∈ [a, b] (6)

and Rv (t, u) = E [v (t) v∗ (u)]. For any discrete estimate
of the form êM =

∑M
i=1 g∗i,Mv (ti,M ), we have

E |e [0] − êM |2 = MSEopt + E |êopt − êM |2 (7)
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where MSEopt � E |e [0] − êc,opt|2. We see MSEopt

does not depend on either {gi,M}M
i=1 or {ti,M}M

i=1, and the
second term in (7) is analogous to E |I − In(h)|2. By ap-
plying the results in the previous subsection, we have

C (h) � lim
M→∞

M2K+2E |êc,opt − êM |2

=
|B2K+2|

(2K + 2)!

∫ b

a

|gopt (t)|2 Re [αK (t)]
h2K+2 (t)

dt

for any set of finger delays {ti,M}M
i=1 generated by the de-

sign density h(u). Consequently, for a sequence of regu-
lar sampling scheme {TM (h)}M associated with h (t), the
chip estimation MSE satisfies

lim
M→∞

E |e [0] − êM |2 = MSEopt

and the fractional MSE defined by fe (M, h) � E|�ec,opt−�eM |2
MSEopt

satisfies,

lim
M→∞

M2K+2fe (M, h) = C ′ (h) � C(h)/MSEopt (8)

3.3. Implications

The result of the previous subsection is quite general in
the sense that it holds for any “regular” finger placement
scheme, including uniform and the asymptotically optimal
design to be introduced later. The theory tells us that for
any regular finger placement, the fractional MSE behaves
like C ′(h)/M2K+2 for large M . The exponent of M de-
pends on the order of quadratic-mean differentiability of
v (t). This is equivalent to the degree of differentiability
of the covariance function
Rv (t, u) =

σ2
e

∞∑
n=−∞

q (t − nTc) q∗ (u − nTc) + N0Rp (t − u)

where t, u ∈ [a, b]. It is seen that the latter depends on
the degree of differentiability of Rp(τ) which in turn de-
pends on the smoothness of the chip pulse p(t). Thus, the
smoother p(t) is, the faster is the rate of convergence of the
chip mean-square estimation error. For example, when rect-
angular pulse is used, it is shown in [6] that K = 0 and
α0(t) = 2N0/Tc almost everywhere on [a, b]. If we con-
volve the rectangular pulse with itself, we get a triangular
chip pulse for which v(t) has exactly one quadratic-mean
derivative, i.e., K = 1. In this case α1(t) = 72N0/T 3

c .
More details can be found in [6].

Of all possible choices of h(t), hu(t) = 1/(b − a) cor-
responds to the scenario that t1,M , . . . , tM,M are equally
spaced for any M . However, hu(t) is not optimal in terms of
minimizing the asymptotic constant C ′(h) in general. The
hopt (t) that minimizes C ′ (h) is given by

hopt(t) =
1
A

[
|gopt (t)|2 Re [αK (t)]

]1/(2K+3)

(9)

where A is a scaling constant to ensure that hopt(t) inte-
grates to one over the interval [a, b]. For this choice of h(t)

C ′ (hopt) =

{∫ b

a

[
|gopt (t)|2 Re [αK (t)]

]1/(2K+3)

dt

}2K+3

|B2K+2|−1
MSEopt (2K + 2)!

4. NUMERICAL RESULTS

In this section, we study numerically the potential benefit
from optimizing the finger delays. All results are based
on a downlink consisting of Q = 24 users with Pk = 1
for all k’s. The spreading gain N is 32 and the chip rate
is 3.6864MHz. Symbols are QPSK modulated and have
unit energy (Eb = 1/2). We compare the average BER
of different schemes over two 3-ray Rayleigh channel mod-
els. For both channel models, the amplitudes of channel
gains α1, α2, α3 are Rayleigh r.v.’s with average power 0,-
3,-8dB. The phase of each ray is uniform r.v. in [0, 2π).
and we always assume τ1 = 0 to account for receiver syn-
chronism. τ2 and τ3 are uniformly distributed in [Tc, 3Tc]
and [4Tc, 6Tc] for the first channel model and [Tc, 10Tc]
and [11Tc, 20Tc] for the second channel model. We choose
[a, b] = [−12Tc, 12Tc] for the first channel model and [a, b] =
[−30Tc, 30Tc] for the second model. The rationale behind
this choice can be found in [6]. We use Ech1{·} and Ech2{·}
to indicate averaging over 400 independent channel realiza-
tions for the first and second channel model, respectively.

Fig.2(a)-(b) shows the behavior of Ech1[fe(M, h)] ver-
sus M for rectangular (K = 0) and triangular (K = 1)
chip pulse, respectively. Two regular sampling schemes are
shown, which correspond to hu(t) = 1

b−a and hopt(t) of
(9), where gopt(t) is the numerical solution of (6). For each
h(t), the asymptotic curve Ech1[C ′

h]/M2K+2 is also plot-
ted. We can see Ech1[fe(M, h)] indeed converges to the
asymptotic curve for both hu(t) and hopt(t), as predicted by
(8). We note that fe (M, h) may not be monotonically de-
creasing as M increases. We do observe that the fe (M,h)
curve with hopt (t) has less variations than that with hu (t).

In Fig.3(a)-(b), Ech1(Pe) versus Eb/N0 curves are shown
for rectangular pulse and triangular pulse, respectively. Curves
in each subplot correspond to the conventional RAKE with
optimal combining, asymptotically optimal finger placement
scheme with 25 fingers, optimal continuous-time filter, and
TDLE with ti = −12Tc + (i − 1)Tc for i = 1, . . . , 25. We
notice that the asymptotically optimal scheme outperforms
TDLE significantly at the same number of fingers.

We also compare different schemes when the second
channel model is used. Fig.4(a)-(b) shows the average bit-
error-probability of different schemes for rectangular and
triangular pulse, respectively. The TDLE scheme sets ti =
−30Tc + (i − 1)Tc for i = 1, . . . , 61. In addition to the
RAKE with optimal combining, optimal continuous-time

III - 907

➡ ➡



filter, TDLE, and asymptotically optimal scheme with 61
fingers, we also plot the performance of asymptotically op-
timal scheme with 34 fingers, which is seen to outperforms
the TDLE with 61 fingers by using roughly half the number
of fingers. This could be a important advantage in terms of
implementation complexity.

The effect of the chip pulse on the system performance
can be observed by comparing the subplots (a) and (b) in
Fig.3 and Fig.4, respectively. It is seen that for a given
signal-to-noise ratio Eb/N0, the BER for a triangular pulse
is smaller than that of a rectangular pulse. This behavior
makes sense and can be easily understood by examining
equation (7). The second term is the integral approximation
error which converges to zero faster for the triangular pulse
because it is smoother than the rectangular pulse. Since the
triangular and rectangular pulse have the same width, the
first term in (7), which is the mean squared continuous-data
estimation error, is smaller for a triangular pulse by virtue
of the larger effective bandwidth it occupies.
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Fig. 1. Receiver structure
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Fig. 2. Ech1[fe(M, h)] and Ech1[C
′(h)]/M2K+2 versus M :

(a) rectangular pulse; (b) triangular pulse. (dashed with star:
Ech1[fe(M, hu)]; dashed: Ech1[C

′(hu)]/M2K+2; solid with
dot: Ech1[fe(M, hopt)]; solid: Ech1[C

′(hopt)]/M
2K+2)
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Fig. 3. Ech1(Pe) versus Eb/N0(dB) for the first channel model:
(a) rectangular pulse; (b) triangular pulse. (’-�’: RAKE with op-
timal combining, 3 fingers; ’-◦’: Tc-spaced finger placement, 25
fingers; ’-�’: Asymptotic optimal design, 25 fingers; ’- -’: Opti-
mal continuous-time filter
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Fig. 4. Ech2(Pe) versus Eb/N0(dB) for the second channel
model: (a) rectangular pulse; (b) triangular pulse. (’-�’: RAKE
with optimal combining, 3 fingers; ’-◦’: Tc-spaced finger place-
ment, 61 fingers; ’-�’: Asymptotic optimal design, 61 fingers;
’-�’: Asymptotic optimal design, 34 fingers; ’- -’: Optimal
continuous-time filter
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